A Dependency Markup Language for Web Services

Robert Tolksdorf

Freie Universiat Berlin, Institut fir Informatik
Netzbasierte Informationssysteme
Takustr. 9, D-14195 Berlin, Germany,
mailto:research @robert-tolksdorf.de, http://www.robert-tolksdorf.de
DRAFT of CRC

Abstract. Current mechanisms for the description of Web Services and their
composition are either to coarse — by specifying a functional interface only — or
too fine — by specifying a concrete control flow amongst services.

We argue that more adequate specifications can be built on the notitapenh-
dencyof activities and coordination activities to manage these dependencies. We
propose a Dependency Markup Language to capture dependencies amongst ac-
tivities and generalizations/specializations amongst processes. With that, we can
describe composite services at more suited levels of abstraction and have several
options to use such descriptions for service coordination, service discovery and
service classification.

1 Introduction

Web Services implement the notion of small networked services that can be combined
to realize more complex processes or composite services (that we sometimes call pro-
cesses in the following). With standards for the representation of their interfaces, their
composition and the exchange of messages with them, an open market for services be-
comes possible. They are enabling to compose complex processes from services that
are offered and implemented by different organizations.

The goal with Web Services is to allow antomatedliscovery and composition of
services. For that, means and languages for machine-readable descriptions of services
are necessary. XML is considered to offer the best chances for a wide exchangeability
of such descriptions.

Currently, there is a number of proposed XML-based languages existing and emerg-
ing for the description of Web Services. We can assume that they will converge in the
midterm. Table 1 shows some of the currently discussed standards for the representation
of combined services and their main characteristic. [AMS02] gives a brief introduction
to most of them.

The proposed languages usually address two aspects that describe a service: its
external interface and its internal behavior. The external interface is specified by a func-
tional description of the services provided. Semantic information can be given in the
form of contracts, either for the service provider — for example with pre- and postcon-
ditions — or the service user — how the services have to be used. The internal behavior
can be specified as a service flow which is commonly described by the specification of
a control flow.

Language External Internal

WSFL [Ley01] functional interface specified data- and control flows specified
XLANG [Tha01] interface specified with WSDL control flow specified, event handling
WSCL allowed interactions (conversation) not specified

[BBB102] specified by interaction-transition net

DAML-S functional interface specified control flow specified by imperative
[ABH102] constructs

ASDL [Z2C02] allowed usage specified by control flow specified

state-(conditioned)transition net
WSMF [FB02] functional interface specified with not specified
pre- and postconditions
BPSS [Bus01] interactions specified by messagestate/transition net

exchanged
BPML [AgrO1] interactions specified by message control flow specified by imperative
exchanged constructs

Table 1. Current (proto-)standards for combined services

In order to identify a service, one searches for a specific interface, perhaps with
further requirements on contracts. In the next section, we discuss why this is not always
the right kind of service description.

2 How to describe processes

[WL95] describes an interesting set of processes, that describe different ways of eating
at a restaurant. For example, the visit to a full-service restaurant is a prodessg—
cooking—serving—eating—paying. But there are more ways to visit a restaurant (that is, to
implement the composite servigsstaurantVisit), as shown in table 2. To speak consis-
tently from the perspective of the service-provider, we use the tekasorder, cook,

serve andcollect. We also assume that anything serves is eaten, so we leageatingt

in the following.

Restaurant Service flow

Full service take order—cook—serve—collect
Fast food cook—take order—collect—serve
Buffet cook-take order—serve—collect
Church suppecollect-take order—cook—serve

Table 2. Ways to visit restaurants (after [WL95])

All these processes do have the same external intevtad @isitRestaurant(Money
wallet, Order whatToEat) perhaps wittbeing repleted=TRUE as a postcondition. When
selecting a restaurant for an evening, however, that interface is most obvious —the actual

choice is on the internal structure of the service. The quality of services that is of inter-
est to the user therefore is not solely the external interface, it can also be the internal
behavior.

The current description mechanism are not sufficient to allow this for clients. There
are two main reasons for this:

— Several languages do not specify the internal behavior with a service description at
all (eg. WSCL, WSMF).

— The means to specify the internal service-flow are low-level and allow only the
expression of the control flow. This addresses only the syntactic structure of the
process and leaves no room to have multiple semantically equal processes fulfill
the specification. The only exception in this respect is WSFL which can express
dataflows.

We could say that precision and recall are low when describing processes by their func-
tional interfaces only. Returning to the restaurant example, “visiting a restaurant” is an
abstractprocess that is implemented by various concrete ones, the table above shows
four of them.

If we want a restaurant service where the food is cooked freshly after we order it,
only Full service andChurch supper can satisfy our request, whikuffet andFast food
cannot. The “cooked fresh” service is both an implementation of the abstract restaurant
visits, but at the same time abstractprocess which is implemented by the two named
processes. The specification, that we want cooking to occur after ordering discriminates
it from the other two processes that we do not want.

In the following, we propose to introduce notions aifstractionand specializa-
tion as relations amongst composite Web Services and the notidapghdencieto
abstractly specify the internal behavior of composed services.

3 Specifying and relating processes

We now look closer at the notions of dependency and specializations.

3.1 Dependencies

The semantical construct we use above for the “cooked fresh” service is that what is
cookeddependson what is ordered. Also, the start of cooking depends on the end of
ordering. The dependencies imply that the control flow in the implementation of such
a service will reactorder beforecook. This makes, however, no statement on whether
we pay at the beginning of our visit or at the end. If necessary, we could specify this by
stating a dependency obllect on serve. All four composite services described above
can be specific by stating that we want to eat something coskea, depends orook.

[MC94] observes that dependencies are the basis on which processes are coordi-
nated and defines coordination as thanagement of dependenci&sis is currently
one of the most accepted notions of coordination.

How the dependencies are managed depends on the coordination mechanism ap-
plied. If multiple entities depend on the availability of some resource, a central coordi-
nation mechanism could be applied that selects one entity to get a lock on the resource.
Another mechanism would be a market-like coordination where entities would have to
bid for the resource. If no dependency amongst activities exist, the scheduling can be
arbitrary — if we only want a place where food is cooked fresh after we ordered, we do
not care when we have to pay.

In our example, we use a temporal dependency between ordering and cooking. In
the beginning, we have hidden another dependency for simplicity — the food has to be
served to be eaten. That dependency expresses that the food has to be transferred to the
customer and that the dependency is resolved when is it placed on his desk.

[Cro91,Del96] have studied kinds of dependencies and associated mechanisms. Ta-
ble 3 shows the main kinds of dependencies distilled by these studies. If a resource is
shared, entities can depend on exclusive access to the resource. Some resource allo-
cation mechanism manages that dependency, for example by scheduling, locking etc.
If two entities exchange information the work of the consumer depends on the ability
to use that information, for example by understanding the format and semantics of the
data. Standardization is a mechanism that tries to resolve that dependency by globally
understandable data formats. See the references for more elaborate analysis.

Coordination mechanism Dependency managed

Resource allocation Shared resources
Notification Prerequisite

Transportation Transfer Producer/
Standardization Usability Consumer
Synchronization Simultaneity

Goal selection

Decomposition Task/Subtask

Table 3. Coordination mechanisms and managed dependencies [Cro91,Del96]

[RG00,RGO01] introduce dependencies as a modeling concept to describe scenarios
for testing software components. The dependencies modeled and the mechanism to
manage them — specific styles of execution order — are shown in table 4.

From these results — there are certainly more studies on dependencies — we see that
the usual focus on a control flow focuses on a secondary aspect. A concrete control
flow describes the result of a mechanism that manages dependencies. There are many
ways to find such a result, eg. solving a set of constraints by a central scheduler or a
decentralized mechanism like bidding for a resource like a CPU. Also, there are many
concrete schedules to manage some dependency. If, for exaarguhelb depend on
some resource the control flowsa.b andb.a (the dot means sequential composition
here), are equally valid results of managing this dependency by establishing exclusive
access.

Dependency class Dependency Coordination Mechanism Execution order

Strict sequence Sequence Sequence
Temporal . :
Real-time . Choice
Loose sequence Alternative Conditioned choice
Causal Data dependency . Loop
Resource dependency Iteration Conditioned loop
. Generalization/Refinement Accidental
Abstraction Aggregation Concurrency Enforced
Prohibited

Table 4. Modeling concepts for dependency charts [RG00,RGO01]

3.2 Abstraction and specialization

The above example talks about processes in three levels of abstractions: 1) the concrete
processes in restaurants, 2) the abstract specification of “freshly cooked” and 3) the
most abstract notion “restaurant visit”.

For computational processes, sound notions for the formal specification of behav-
ior exist. For business processes, however, “qualities” like “freshly cooked” become
important that are hard to capture. For the “computation” “visit a restaurant”, all behav-
iors shown above are computationally equivalent. With the intention that one has when
expressing abstractions on business processes, other notations are necessary.

[MCL *99] mentions two dimensions when analyzing processes. The most common
view is to talk about thpartsof a process, that is the sub-activities that have to be taken.

In our example, this refers to the respective services that compose the restaurant visit.
Another, equally important dimension is ttygeof process. In our example, this refers

to the grouping ofull service andChurch supper into the type “freshly cooked”. The
levels of abstraction mentioned then lead to a hierarchy of specializations and general-
izations of processes.

[WL95] approach specialization concepts for processes. They develop specializa-
tion and refinement transformations and the respective generalization and abstraction
transformations. With these, hierarchies of processes can be derived. The kinds of
restaurant visits can be generalized into a generic restaurant visit which includes the
union of all possible orderings of services. With specialization then, new processes can
be derived.

Still, for business processes, not all possible specializations of the most abstract
service o something” are useful ones. It remains to the modeler to put the focus on
interesting, useful and possible processes.

3.3 Typing Web Services

The typing concepts for Web services are currently not very elaborate. The notions of
port- and service-types are quite similar to the notions of interfaces in object-based
standards such as OMG/CORBA. There, interface-types are related by specialization
and generalization and a formal notion of a contravariant subtyping of interfaces.

We expect that such mechanisms are equally usable for Web Services and will en-
able some sort of Web Services trading. At such a trader, one would request a service
of some interface/service type and get a reference to a service with a compatible inter-
face/service type.

This well known mechanism of service-discovery addresses only the syntactic as-
pects of what a client expects from the service. The contract between the client and
the server concerns only the kind and format of data exchanged but says nothing about
what the service does.

We propose that dependencies are used as an additional information about the inter-
nal workings of a service. It could be provided together with the service type description
and can be taken into account during service discovery. The description of internal ser-
vice characteristics by dependencies is complementary to the description of external
characteristics by interfaces.

Abstraction and specialization serve several purposes:

— During discovery, clients can express abstract expectations on the dependencies
ruling the workings of the service. The service found during service discovery will
observe these dependencies, perhaps some additional ones (see section 5.2).

— The level of detail in the description can be more abstract or more concrete de-
pending on how much information the service provide is willing to disclose. All
descriptions along the abstraction/specialization hierarchy are, however, valid de-
scriptions of the service.

— Abstraction and specialization express a relative semantic of what the services do.
This semantic is explicitly provided by the service description, but there are also
option for deriving it automatically (see section 5.3).

4 A Dependency Markup Language

Starting with some example processes that are similar we claimed that the notions of
dependencies and generalization/specialization are better suited to describe composite
services than just functional interfaces or just a specific control flow.

For Web Services, we propos®apendency Markup Langua@@ML) which pro-
vides the necessary language to express both. The resulting specification is more ab-
stract than a concrete control flow and a more specific service description than a func-
tional interface.

Figure 1 shows the structure of DML in terms of defined elements. A DML descrip-
tion consists of a set of dependency type declarations and a set of process descriptions.
Each process contains a set of dependency descriptions.

Figure 2 shows an excerpt of the respective XML Schema to document attributes.
Dependency types declare a name for them and also can be related by a specializes-
declaration.

In the current version, each dependency in a process connects two sefrgices (
andto). It can refer to the events of starting or ending the services tyfdeeAttribute
defines the kind of dependency. Processes them self can be related by specialization.

With that, we can put our knowledge on restaurants into a DML file as shown in
figure 3.

Wype [xsianyType |

h
: boalype [xsanyType |
—| dependency-type [ﬁl—@jﬂ--: _________________
[dmi_ B | mecalaes
ibype | specializeslist |

Fig. 1. The structure of DML

5 Processing DML

Given a description of a composite service with DML, there are several ways to process
it. We foresee a&oordination environmerfor DML that contains several services that
perform functionalities as described in the next subsections.

5.1 Coordinating Web Services

The dependency-type specifications in DML carry no information about how the depen-
dencies are managed. As seen in 3.1, there are several ways to manage dependencies
resulting in different execution orders of services.

The coordination environment for DML contaigsordination serviceshat bind
themselves to dependency types they are able to manage. Based on the information
given by the DML specification, a coordination service generates a specific service
service flows relative to the specification languages for composite services mentioned
in the beginning.

To ensure openness and interoperability of these coordination services, a depen-
dency ontology will be necessary. Currently, it is built by the specialization hierarchy
within DML. The next step would be the design of an open dependency ontology on
the basis of DAML+OIL which would be closely related to approaches like DAML-S.
Figure 4 shows the DML notation for the dependency types mentioned in section 3.1.

5.2 Discovering Web Services with DML

In the coordination environmeependency matchease able to determine whether a
control flow is a specialization of a process. A concrete control flow is nothing than a

<xs:attributeGroup name="identification">
<xs:attribute name="id" type="xs:ID" use="required"/>
<xs:attribute name="name" type="xs:string"/>
</xs:attributeGroup>
<xs:attributeGroup name="specialization">
<xs:attribute name="specializes" type="xs:anyURI" use="optional"/>
</xs:attributeGroup>
<xs:simpleType name="event">
<xs:restriction base="xs:string">
<xs:enumeration value="end"/>
<xs:enumeration value="start"/>
</xs:restriction>
</xs:simpleType>
<xs:attribute name="servicereference" type="xs:anyURI"/>
<xs:simpleType name="specializesList">
<xs:list itemType="xs:anyURI"/>
</xs:simpleType>
<xs:.element name="specializes" type="specializesList"/>
[..]
<xs:element name="dependency-type" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element ref="description" minOccurs="0"/>
<xs:element ref="specializes" minOccurs="0"/>
</xs:sequence>
<xs:attributeGroup ref="identification"/>
<xs:attributeGroup ref="specialization"/>
</xs:complexType>
</xs:element>
[...]
<xs:element name="process" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element ref="description" minOccurs="0"/>
<xs:element ref="specializes" minOccurs="0"/>
<xs:element name="dependency" maxOccurs="unbounded">
<xs:complexType>
<xs:attribute name="name" type="xs:string"/>
<xs:attribute name="type" type="xs:anyURI" use="required"/>
<xs:attribute name="from" type="xs:anyURI"/>
<xs:attribute name="from-event" type="event" default="end"/>
<xs:attribute name="to" type="xs:anyURI"/>
<xs:attribute name="to-event" type="event" default="start"/>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attributeGroup ref="identification"/>
<xs:attributeGroup ref="specialization"/>
</xs:complexType>
</xs:element>

[.]

Fig. 2. An excerpt from the DML schema

[..]

<process id="restaurantVisit" name="Visit to a restaurant">
<description>
An abstract description of a restaurant visit where only
cooked food is eaten.
</description>
<dependency type="looseSequence" from="cook" to="serve"/>
</process>
<process id="freshlyCooked" specializes="restaurantVisit">
<description>
An abstract description where things are cooked after an order.
</description>
<dependency type="looseSequence" from="takeOrder" to="cook"/>
</process>
<process id="fullService" specializes="freshlyCooked">
<dependency type="strictSequence" from="takeOrder" to="cook'/>
<dependency type="strictSequence" from="cook" to="serve"/>
<dependency type="strictSequence" from="serve" to="collect"/>
</process>
<process id="fastFood" specializes="restaurantVisit">
<dependency type="strictSequence" from="cook" to="takeOrder"/>
<dependency type="strictSequence" from="takeOrder" to="collect"/>
<dependency type="strictSequence" from="collect" to="serve"/>
</process>
<process id="buffet" specializes="restaurantVisit">
<dependency type="strictSequence" from="cook" to="takeOrder"/>
<dependency type="strictSequence" from="takeOrder" to="serve"/>
<dependency type="strictSequence" from="serve" to="collect"/>
</process>
<process id="churchSupper" specializes="freshlyCooked">
<dependency type="strictSequence" from="collect" to="takeOrder"/>
<dependency type="strictSequence" from="takeOrder" to="cook"/>
<dependency type="strictSequence" from="cook" to="serve"/>
</process>

(-]

Fig. 3. The restaurant example in DML

dependency specification, only at a less abstract level. Since coordination mechanisms
are able to generate such a specialization by applying coordination mechanism, they
can also determine whether they can generate a given process (they might not be able to
falsify this) as a specialization of a certain DML specification. [WL95] contains a basic
set of the necessary relations to do that.

With that, one can implement an enhanced discovery of Web Services that take into
account dependencies in addition to any functional interfaces. Such a service would
resolve the problems mentioned in the introduction.

5.3 Classifying processes

In DML the specialization hierarchy has to be specified explicitly. There seem to be
more options for an automatic detection of such relations and an automatic classification

[..]
<dependency-type
<dependency-type
<dependency-type
<dependency-type
<dependency-type
<dependency-type
<dependency-type
<dependency-type
<dependency-type
<dependency-type
<dependency-type
<dependency-type

id="any"/>
id="mit-dependency" specializes="any"/>

id="sharedResources" specializes="mit-dependency"/>
id="producerConsumer" specializes="mit-dependency"/>

id="prerequisite” specializes="producerConsumer"/>
id="transfer" specializes="producerConsumer"/>
id="usability" specializes="producerConsumer"/>
id="simultaneity" specializes="mit-dependency"/>
id="taskSubtask" specializes="mit-dependency"/>
id="unizh-dependency" specializes="any"/>
id="temporal" specializes="unizh-dependency"/>
id="strictSequence">

<specializes>temporal looseSequence</specializes>
</dependency-type>

<dependency-type
<dependency-type
<dependency-type
<dependency-type
<dependency-type
<dependency-type
<dependency-type
<dependency-type
<dependency-type

id="realTime" specializes="temporal"/>
id="causal" specializes="unizh-dependency"/>
id="looseSequence" specializes="causal"/>
id="dataDependency" specializes="causal'/>
id="resourceDependency" specializes="causal"/>
id="abstraction" specializes="unizh-dependency"/>
id="generalization" specializes="abstraction"/>
id="refinement" specializes="abstraction"/>
id="aggregation" specializes="abstraction"/>

(]

Fig. 4. Dependencies from tables 3 and 4 in DML

of composite services on that basis. Works like [Nie95,MHK98,ZG00] have studied
such kind of typing of processes.

For our example, it can be detected théiService contains the dependency that is
specified forfreshlyCooked since the dependency frotakeOrder to cook exists. The
type of the dependency ifullService is strictSequence which is a specialization of
looseSequence according to our hierarchy of dependencies. From that, one could infer
thatfullService specializesreshlyCooked.

However, there are limits to such a classification. The dependencies still capture
structural properties of processes. The processes under consideration implement some
functionality. Even if two processes share no structural characteristics, they can still
implement the same functionality and thus both specialize the same abstraction which
might even be empty of dependencies.

6 Outlook

The DML specification is currently being finalized. On this basis, a coordination en-
vironment is to be build and tested. This includes the implementation of a set of co-
ordination mechanisms, their binding to dependencies and the generation of control
flows from DML. This also includes the implementation of dependency matchers as
described.

The implementation of the mentioned services of the coordination environment
seems to be straightforward. The coordination services transform DML specifications
into formats for service composition and might even be implemented in XSL. Service
discovery requires a repository of DML descriptions and an appropriate and simple
lookup algorithm. A classification service needs the implementation of some more com-
plex algorithms as mentioned in the above description.

The main obstacle to set up such a coordination environment is to make it rich in
expressibility of dependencies. The dependency ontology has to be enlarged by fur-
ther studies [Tol0O0]. It has be checked how notions of dependencies can be related by
specialization to lead to a unified hierarchy. It has to be tested how the mentioned mech-
anisms for automatic classification of processes can be applied for DML specifications
and whether they lead to useful results. Furthermore, the currently not considered mul-
tiparty dependencies have to be explored.

References

[ABHT02] Anupriya Ankolekar, Mark Burstein, Jerry R. Hobbs, Ora Lassila, David Martin,
Drew McDermott, Sheila A. Mcllraith, Srini Narayanan, Massimo Paolucci andTerry
Payne, and Katia Sycara. DAML-S: Web Service Description for the Semantic Web.
In I. Horrocks and J. Hendler, editofBhe Semantic Web - ISWC 20@2lume 2342
of LNCS pages 348-363. Springer-Verlag, 2002.

[AgrO0l] Ashish Agrawal, editorBusiness Process Modeling Language (BPML) Specification
Business Process Management Initiative, 2001.

[AMS02] Selim Aissi, Pallavi Malu, and Krishnamurthy Srinivasan. E-Business Process Mod-
eling: The Next Big SteplEEE Computer35(5):55-62, May 2002.

[BBB102] Arindam Banerji, Claudio Bartolini, Dorothea Beringer, Venkatesh Chopella, Kan-
nan Govindarajan, Alan Karp, Harumi Kuno, Mike Lemon, Gregory Pogossiants,
Shamik Sharma, and Scott Williams. Web Services Conversation Language (WSCL)
1.0. W3c note, World Wide Web Consortium, 2002. http://www.w3.org/TR/wscl10/.

[Bus0l1] Business Process Team. ebXML Business Process Specification Schema. Technical
report, UN/CEFACT and OASIS, 2001. http://www.ebxml.org/specs/ebBPSS.pdf.

[Cro91] Kevin Ghen CrowstonTowards a Coordination Cookbook: Recipes for Multi-Agent
Action PhD thesis, Sloan School of Management, MIT, 1991. CCS TR# 128.

[Del96] Chrysantos Nicholas Dellarocas. Coordination Perspective on Software Architec-
ture: Towards a Design Handbook for Integrating Software Compon@&tb thesis,
Massachusetts Institute of Technology, 1996.

[FBO2] D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF. Technical
report, Vrije Universiteit Amsterdam, 2002.

[LeyOl] Frank Leymann. Web Services Flow Language Web Services Flow Language Web
Services Flow Language Web Services Flow Language (WSFL 1.0). Technical report,
IBM Software Group, 5 2001.

[MC94] Thomas W. Malone and Kevin Crowston. The Interdisciplinary Study of Coordina-
tion. ACM Computing Survey26(1):87-119, March 1994.

[MCL%99] Thomas W. Malone, Kevin Crowston, Jintae Lee, Brian Pentland, Chrysanthos Del-
larocas, George Wyner, John Quimby, Charles S. Osborn, Abraham Bernstein, George
Herman, Mark Klein, and Elissa O Donnell. Tools for Inventing Organizations: To-
ward a Handbook of Organizational Proces$éanagement Sciencé5(3):425-443,
31999.

[MHK98]

[Nie95]

[RGOO]

[RGO1]

[Thao1]

[Tol0O]

[WL95]

[ZC02]

[2G00]

Max M iihlhauser, Ralf Hauber, and Theodorich Kopetzky. Typing Concepts for the
Web as a Basis for Re-use. In Anne-Marie Vercoustre, Maria Milosavljevic, and
Ross Wilkinson, editorsProceedings of the Workshop on the Reuse of Webbased
Information Report Number CMIS 98-111, pages 79-89. CSIRO Mathematical and
Information Sciences, 1998.

Oscar Nierstrasz. Regular Types for Active Objects. In O. Nierstrasz and
D. Tsichritzis, editorsObject-Oriented Software Compositiahapter 4, pages 99—
121. Prentice Hall, 1995.

J. Ryser and M. Glinz. Using Dependency Charts to ImproveScenario-Based Testing.
In Proceedings of the 17th International Conference on Testing Computer Software
(TCS2000)Washington D.C., 6 2000.

J. Ryser and M. Glinz. Dependency Charts as a Means to Model Inter-Scenario De-
pendencies. In G. Engels, A. Oberweis, and Andorf, editorsModellierung 2001
volume P-1 ofGI-Edition - Lecture Notes in Informaticpages 71-80, 2001.

Satish Thatte. XLANG. Web Services for Business Process Design. Technical report,
Microsoft Corporation, 2001.

Robert Tolksdorf. Models of Coordination. In Andrea Omicini, Robert Tolksdorf,
and Franco Zambonelli, editor&ngineering Societies in the Agent World First In-
ternational Workshop, ESAW 2000, Berlin, Germany, August 21,,2000ber LNAI

1972, pages 78-92. Springer Verlag, 2000.

George M. Wyner and Jintae Lee. Applying Specialization to Process Models. In
Conference on Organizational Computing Systefosls, pages 290-301, 1995.

Mladen A. Vouk Zhengang Chang, Munindar P. Singh. = Composition Con-
straints for Semantic Web Services. IRroceedings of the International
Workshop Real World RDF and Semantic Web Applications 20202.
http://www.cs.rutgers.edu/"shklar/www11/.

Michael Zapf and Kurt Geihs. What Type Is It? A Type System for Mobile Agents.

In Robert Trappl, editofProceedings of the 15th European Meeting on Cybernetics
and Systems Researgages 585-590. Austrian Society for Cybernetic Studies, April
2000.

