
XMLSpaces for Coordination in Web-based Systems

Robert Tolksdorf Dirk Glaubitz

Technische Universität Berlin, Fachbereich Informatik, FLP/KIT,
Sekr. FR 6–10, Franklinstr. 28/29, D-10587 Berlin, Germany,

mailto:tolk@cs.tu-berlin.de, http://www.cs.tu-berlin.de/˜tolk, mailto:glaubitz@cs.tu-berlin.de
February 22, 2001

Abstract

XMLSpaces is an extension to the Linda coordination
language for Web-based applications. It supports XML doc-
uments as tuple fields and multiple matching routines im-
plementing different relations amongst XML documents, in-
cluding those given by XML query-languages. XMLSpaces
is distributed with a clearly encapsulated open distribution
strategy.

1 Introduction

While the Web has become the universal information
system worldwide in its first ten years of existence, the
progress towards open distributed applications utilizing the
Web for universal access is rather slow. Although there are
several technologies like Java or CORBA available, none of
these has reached universal acceptance. The current trend
towards application service provision also does not allow
for real peer-to-peer distribution, but introduces a server-
centric paradigm with very limited distribution.

A core question in supporting distributed applications is
what concept is applied for the coordination of independent
activities in a cooperative whole. This has been the subject
of the study of coordination models, languages and systems
([9]). One approach is to design a separate coordination
language ([7]) that deals exclusively with the aspects of
the interplay of entities and provides concepts orthogonal
to computation.

Most recently, the Web-Standard XML (Extensible
Markup Language) ([14]) has become the format to ex-
change data markup following application specific syntaxis.
It may well be the dominating interchange format for data
over networks for the next years. XML data is semi-
structured and typed. A DTD (Document Type Definition)
defines a context-free grammar to which an XML document
must adhere. Tags define structures within a document that
encapsulate further data. With attributes, certain meta infor-

mation about the data encapsulated can be expressed. While
XML enables collaboration in distributed and open systems
by providing common data formats, it is still unclear how
components coordinate their work.

The concept of XMLSpaces presented in this paper mar-
ries the common communication format XML with the co-
ordination language Linda. It aims at providing coordina-
tion in open distributed systems based on Web-related stan-
dards. XMLSpaces provides a simple yet flexible concept to
coordinate components in that context and extends the orig-
inal Linda-notion with a more flexible matching concept.

This paper is organized as follows. We first motivate the
extension of Linda with support for XML documents. Then
we describe the concepts used in XMLSpaces for multiple
XML matching relations and distribution. After that, we de-
scribe the components used in the XMLSpaces implemen-
tation and finally compare our approach with related work
and conclude.

2 Linda-like Coordination

Linda-like languages are based on data-centric coordi-
nation models. They introduce the notion of a shared datas-
pace that decouples partners in communication and collab-
oration both in space and time ([3]).

The coordination media in Linda is the tuplespace which
is a multiset of tuples. These are in turn ordered lists of un-
named fields typed by a set of primitive types. An example
is

�
10,”Hello” � which consists of an integer and a string.
The tuplespace provides operations that uncouple the co-

ordinated entities in time and space by indirect, anonymous,
undirected and asynchronous communication and synchro-
nization. The producer of data, can emit a tuple to the tu-
plespace by out(

�
10,”Hello” � ). The consumer of that data

does not even have to exist at the time it is stored in the
space. The producer can terminate before the data is con-
sumed.

To consume some data, a process has to describe what
kind of tuple shall be retrieved. This description is called

1



a template, which is similar to tuples with the exception,
that fields also can contain bottom-elements for each type,
eg.

�
10,?string � . These placeholders are called formals in

contrast to actuals which are fields with a value. Given a
template, the tuplespace is searched for a matching tuple. A
matching relation on templates and tuples guides that selec-
tion.

Retrieving a matching tuple is done by in(
�
10,?string � )

which returns the match and removes it from the space. The
primitive rd(

�
10,?string � ) also returns a match but leaves

the tuple in the tuplespace. Both primitives block until a
matching tuple is found, thereby synchronizing the con-
sumer with the production of data.

In Linda, the matching relation requires the same length
of tuples and templates and identical types of the respective
fields. For formals in the template, the actual in the tuple
has to be of same type, while actuals in the template require
the same value in the tuple.

Tuples as in Linda can be considered “primitive data” –
there are no higher order values such as nested tuples, no
mechanisms to express the intention of typing fields such as
names etc.

When aiming at coordination in open distributed sys-
tems, a richer form of data is needed. It has to be able
to capture application specific higher data-structures easily
without the need to encode them into primitive fields. The
format has to be open so that new types of data can be spec-
ified. And it has to be standardized in some way, so that
data-items can be exchanged between entities that have dif-
ferent design-origins.

The Extensible Markup Language XML ([14]) has re-
cently been defined as a basis for application specific
markup for networked documents. It seems to meet all the
outlined requirements as a data-representation format to be
used in a Linda-like system for open distributed systems.
XMLSpaces is our system that uses XML documents in ad-
dition to ordinary tuple fields to coordinate entities with the
Linda-primitives.

3 XMLSpaces

XMLSpaces extends the Linda model in several major
aspects:

1. XML documents serve as field-data within the coor-
dination space. Thus, ordinary tuples are supported,
while pure XML documents can be represented as one-
fielded tuples.

2. A multitude of relations amongst XML documents can
be used for matching. While some are supplied, the
system is open for extension with further relations.

3. XMLSpaces is distributed so that multiple dataspace
servers at different locations form one logic dataspace.
A clearly separated distribution policy can easily be
tailored to different network restrictions.

4. Distributed events are supported so that clients can be
notified when a tuple is added or removed somewhere
in the dataspace.

We describe these extensions in the following sections.

3.1 XML support in tuple fields

In XMLSpaces, actual tuple fields can contain an XML
document, formal fields can contain some XML document
description, such as a query in an XML query language.
The matching relation is extended on the field-field level
with relations on XML documents and expressions from
query languages. All Linda operations, and the matching
rule for other field-types and tuples are unchanged.

The matching rule to use for XML fields is not statically
defined, instead, XMLSpaces supports multiple matching
relations on XML documents. The current implementa-
tion of XMLSpaces builds on a standard implementation of
Linda, namely TSpaces ([17]). It already provides the nec-
essary storage management and the basic implementations
for the Linda primitives.

In TSpaces, tuple fields are instances of the class Field.
It provides a method matches(Field f) that implements the
matching-relation amongst fields and returns true if it holds.
The method is called by the matching method of class Su-
perTuple, which tests for equal length of tuples and tem-
plates. Actuals and formals are not modeled as distin-
guished classes but rather typed according to their use in
matching.

XMLSpaces introduces the class XMLDocField as a
subclass of Field. The contents of the field is typed as an
actual or a formal by fulfilling a Java-interface. If it imple-
ments the interface org.w3c.dom.Document, it is an actual
field containing an XML document. If it implements the
interface XMLMatchable, it is a formal. Otherwise it is an
invalid contents for an XMLDocField.

The method matches of an XMLDocField object tests
the polarity of fields for matching. It returns false, when
both objects are typed as formals, or when an actual is to be
matched against a formal. If both the XMLDocField-object
and the parameter to matches are actuals, a test for equal-
ity is performed. Otherwise – if a formal is to be matched
against an XML document – the method xmlMatch of the
formal is used to test a matching relation.

Figure 1 summarizes the resulting class hierarchy.

2



SuperTuple
��� � ��� � �
	 ����
���� � � ��� ��� ������� � ��� � ���

<<TSpaces>>

Field
��� � � � � ��	 ���
��� ��� � ����� � ��� � � �

<<TSpaces>>

ActualObject

XMLDocField
��� � � � � ��	 ���
��� ��� � ����� � ��� � � �

FieldContent

Form alObject

XMLMatchable
<<Interface>>

� � � !"� � ����	 � � � #��
$����%� ��� &
' (�) �
' � ���*' $+� ��� ����� � ���
� � ��� � ���

XQLMatch

Serializable
<<Interface>>

org.w3c.dom.Document
<<Interface>>

XPathMatch

DTDMatch

DoctypeMatch XMLAndMatchable

ExactMatch

RestrictedEqualityMatch

XMLNotMatchable

XMLOrMatchable

XMLXOrMatchable

Figure 1. The class hierarchy for XML docu-
ments in tuple fields

3.2 Multiple matching relations

The purpose of the interface XMLMatchable is to al-
low for a variety of matching relations amongst XML doc-
uments. The template used for in and rd then, is not rel-
ative to the language definition as with Linda, but relative
to a relation on XML documents and XML templates that
is contained within the template as the implementation of
xmlMatch in XMLMatchable.

The use of multiple matching relations can be an applica-
tion requirement. In the Workspaces architecture ([11, 12]),
workflows and their steps, and the documents worked on
are represented as XML documents. In order to retrieve
“something to do”, one wants a document that follows some
work-description DTD. If, however, a specific task is to be
done on a specific document, one wants the one XML docu-
ment that might be described by an identifier in an attribute.
This requirement induces the need for support of multiple
relations used in matching.

XMLMatchable is also the basis of the extensibility of

XMLSpaces with new matching relations. To realize it, a
new class has to be provided that implements this interface
and tests for the new relation in the xmlMatch method.

While the XML standard defines one relation, namely
the “validates” from an XML document to a DTD, there is a
variety of possible other relations amongst XML documents
and other forms of templates. These include:

, An XML document can be matched to another one
based on equality of contents, or on equality of at-
tributes in elements.

, An XML document can be matched to another one
which validates against the same grammar, ie. DTD.

, An XML document can be matched to another one
which validates against the same minimal grammar
with or without renaming of element- and attribute-
names.

, An XML document can be matched to a query expres-
sion following the syntax and semantics of those, for
example XML-QL, XQL, or XPath/Pointer.

Currently, several relations are implemented in XML-
Spaces as shown in table 1.

The relations fall into different categories:

, The equality relations use several views on what equal-
ity of XML documents actually means. For example,
are comments included in a check or not.

, The DTD relations take the relation of a document to a
DTD or a doctype name as constituent for matching.

, The query language relations build on several existing
XML oriented query languages. A query describes a
set of XML documents to which the query matches.
The query match then is take as the matching relation
in the sense of XMLSpaces. Note that the query lan-
guages are of high expressibility, for example, match-
ing for all documents that contain a specific value in
some attribute can be formulates as an XPath or XQL
expression. While the equality and DTD relations con-
sider a document as a whole, the query relations try to
find a match in one part of a document.

, The connector relations allow it to build boolean ex-
pressions on matching relations whose result gives the
final matching relation.

3.3 Distributed XMLSpaces

In order to make XMLSpaces usable to coordinate wide-
area applications, it has to support some form of distri-
bution. It seems to be without question, that centralized

3



Relation Meaning Tool used
Exact equality Exact textual equality DOM interfaces
Restricted equality Textual equality ignoring comments, processing instructions, etc. DOM interfaces
DTD Valid towards a DTD IBM XML4J Parser
DOCTYPE Uses specific Doctype name DOM DocumentType
XPath Fulfills an XPath expression Xalan-Java
XQL Fulfills an XQL expression GMD-IPSI XQL-Engine
AND Fulfills two matching relations –
NOT Does not fulfill matching relation –
OR Fulfills one or two matching relations –
XOR Fulfills one matching relation –

Table 1. Matching relations in XMLSpaces

coordination platforms suffer from major problems con-
cerning performance and communication bottlenecks, sin-
gle point of failure etc. XMLSpaces supports the integra-
tion of XMLSpaces servers at different places into a single
logic dataspace.

Distribution of a Linda-like system can be implemented
using different distribution schema which have different ef-
ficiency characteristics:

, Centralized: One server holds the complete dataspace.

, Distributed: All servers hold distinct subsets of the
complete dataspace.

, Full replication: All servers hold consistent copies of
the complete dataspace.

, Partial replication: Subsets of servers hold consistent
copies of subsets of the dataspace ([5]).

, Hashing: Matching tuples and templates are stored
at the same server selected by some hashing function
([1]).

XMLSpaces does not prescribe one specific strategy but
encapsulates the distribution strategy applied in a distribu-
tor object. At its interface, it offers distributed versions of
the Linda-primitives. The implementation of the distributor
object implements a distribution strategy by the respective
versions of these methods.

XMLSpaces is open in the sense that, with a suited dis-
tribution strategy, servers can join and leave at any time. As
the distributor object has to know about registered servers,
its interface includes respective methods to register and
deregister remote servers.

Currently, XMLSpaces includes implementations of the
centralized and partial replication strategy. The system can
easily be extended by other distributor objects that imple-
ment other strategies. The choice of the distribution policy
is configured at startup in a configuration file.

The partial replication schema is depicted in figure 2.
The nodes in the distributed XMLSpace each store a sub-
set of the complete contents of the datastore. The nodes
organized in so called out-sets contain identical replicas of
a subset as in figure 2(a). An out-operation transmits the
argument data to all members of the out-set for storage. Ev-
ery node is at the same time a member of a so called in-
set. The nodes within one in-set store different subsets of
the complete dataspace. The union of their contents repre-
sents the whole dataspace. Thus, any in- or rd-operation
asks all nodes in the in-set for a match. In contrast to [10],
XMLSpaces does not use a software-bus for communica-
tion but establishes point-to-point communication amongst
the members of a set.

The structure formed by the sets has to be rectangular – a
condition that cannot be upheld in the case of open systems
with a varying number of participating nodes. Therefore,
the structure has to be retained by simulating nodes if nec-
essary. As shown in figure 2(b), one physical node then is
part of two out- or in-sets. The reconfiguration of the sys-
tem in the case of joining and leaving nodes is part of the
protocol for joining and leaving nodes.

The distributed strategy above turns out to be a special
case of partial replication – one with only one in-set. XML-
Spaces offers a respective subclass for distributor objects.
Similar, full replication is also the special case of partial
replication with a single out-set.

TSpaces supports events that can be raised when a tu-
ple is entered or removed from the dataspace. XMLSpaces
extends this mechanism to support distributed events where
clients can register for an event occuring somewhere in the
distributed dataspace. The distribution of events is also per-
formed by the distributor object following the respective
distribution strategy.

4



� ��� �����
	� ��� �����

� ��� �������

��
� ���
��

��
� ���
��

��
� ���
����� �

B
���

�

D
��� D

C

E
E

 

� ��� �����
	� ��� �����

� ��� �������

��
� ���
��

��
� ���
��

��
� ���
�����

�

D
���

E
E

 

D
C

���

(a) The grid (b) Simulating nodes

Figure 2. Partial Replication

4 Implementation

XMLSpaces extends the original Linda conception with
XML documents and distribution. It does not change the
set of primitives supported nor affect the implemented in-
ternal organization of the dataspace. Thus, we have cho-
sen to build on an existing Linda-implementation, namely
TSpaces ([17]).

TSpaces is attractive for this purpose, as it is an object-
oriented implementation in Java and the XML support can
be easily introduced by subclassing. Also, all issues of
server management can be reused for XMLSpaces. In or-
der to support distribution, the original TSpaces implemen-
tation had to be extended at some places. TSpaces allowed
for a rapid implementation of XMLSpaces focusing on the
extensions. However, it could well be exchanged by some
other extensible Linda-kernel.

The standard document object model DOM ([13]), level
1, serves as the internal representation of XML documents
in actual fields. This lead to a great flexibility to extend
XMLSpaces with further matching relations using a stan-
dard API. It has shown that the integration of such an en-
gine into XMLSpaces is extremely simple when written in
Java and utilizing DOM. If not, some wrapper-object has
to be specified in addition. XMLSpaces itself is completely
generic towards how the xmlMatch-method is implemented
and what its semantics are.

As seen in table 1, the huge amount of XML related soft-
ware provided engines that could directly evaluate the rela-
tions on XML documents we are interested in.

5 Related Work

There are some projects documented on extending
Linda-like systems with XML documents. However, XML-
Spaces seems to be unique in its support for multiple match-
ing relations and its extensibility.

MARS-X ([2]) is an implementation of an extended
JavaSpaces ([6]) interface. Here, tuples are represented as
Java-objects where instance variables correspond to tuple
fields. Such an tuple-object can be externally represented
as an element within an XML document. Its representation
has to adhere to a tuple-specific DTD. MARS-X is closely
related to tuples as Java objects and does not look at arbi-
trary relations amongst XML documents.

XSet ([18]) is an XML database which also incorpo-
rates a special matching relation amongst XML documents.
Here, queries are XML documents themselves and match
any other XML document whose tag structure is a strict su-
perset of that of the query. It should be simple to extend
XMLSpaces with this engine.

The note in [8] describes a preversion for an XML-
Spaces. However, it provides merely an XML based en-
coding of tuples and Linda-operations with no significant
extension. Apparently, the proposed project was not fin-
ished up to now.

TSpaces has some XML support built in ([17]). Here,
tuple fields can contain XML documents which are DOM-
objects generated from strings. The scan-operation pro-
vided by TSpaces can take an XQL query and returns all
tuples that contain a field with an XML document in which
one or more nodes match the XQL query. This ignores the

5



field structure and does not follow the original Linda defi-
nition of the matching relation. Also, there is no flexibility
to support further relations on XML documents.

6 Conclusion and Outlook

XMLSpaces is a distributed coordination platform that
extends the Linda coordination language with the ability to
carry XML documents in tuple fields. It is able to support
multiple matching relations on XML documents. Both the
set of matching relations and the distribution strategy are
extensible.

XMLSpaces satisfies the need for better structured coor-
dination data in the Web context by using XML in an open
end extensible manner. It has shown that the Linda concept
can be extended easily while retaining the original concepts
on coordination and a very small core of the coordination
language.

Future technological extensions of XMLSpaces include
the use of DOM level 2 object model ([15]) to represent
XML documents. This standard supports XML Names-
paces ([16]) which is necessary to support the full set of
XML core specifications in XMLSpaces. Also, this might
lead to further matching relations. Issues for extending the
functionality are in the areas of security, and fault-tolerance,
including extending the transaction concept already existing
in TSpaces.

Currently, XMLSpaces is static in its configuration of the
distribution policy. A future extension will be support for
runtime composition of the system similar to OpenSpaces
([4]). In order to do so, the distributor objects have to be
able to establish some “normalized” distribution state from
which a new strategy can be built.

Further details about XMLSpaces can be found at URL
http://www.cs.tu-berlin.de/˜tolk/xmlspaces.

Acknowledgement

The IBM Almalden Research Center supported the work on
XMLSpaces by granting a licence to the TSpaces source
code.

References

[1] R. Bjornson. Linda on Distributed Memory Multiproces-
sors. PhD thesis, Yale University Department of Computer
Science, 1992. Technical Report 931.

[2] G. Cabri, L. Leonardi, and F. Zambonelli. XML Dataspaces
for Mobile Agent Coordination. In 15th ACM Symposium
on Applied Computing, pages 181–188, 2000.

[3] N. Carriero and D. Gelernter. Linda in Context. Commun.
ACM, 32(4):444–458, 1989.

[4] S. Ducasse, T. Hofmann, and O. Nierstrasz. OpenSpaces:
An Object-Oriented Framework For Reconfigurable Coordi-
nation Spaces. In A. Porto and G.-C. Roman, editors, Coor-
dination Languages and Models, LNCS 1906, pages 1–19,
Limassol, Cyprus, Sept. 2000.

[5] C. Fraasen. Intermediate Uniformly Distributed Tuple Space
on Transputer Meshes. In J. Banâtre and D. Le Métayer, ed-
itors, Research Directions in High-Level Parallel Program-
ming Languages, number 574 in LNCS, pages 157–173.
Springer, 1991.

[6] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces princi-
ples, patterns, and practice. Addison-Wesley, Reading, MA,
USA, 1999.

[7] D. Gelernter and N. Carriero. Coordination Languages and
their Significance. Commun. ACM, 35(2):97–107, 1992.

[8] D. Moffat. XML-Tuples and XML-Spaces, V0.7.
http://uncled.oit.unc.edu/XML/XMLSpaces.html, Mar
1999.

[9] G. Papadopoulos and F. Arbab. Coordination models and
languages. In Advances in Computers, volume 46: The En-
gineering of Large Systems. Academic Press, 1998.

[10] R. Tolksdorf. Laura - A Service-Based Coordination Lan-
guage. Science of Computer Programming, Special issue on
Coordination Models, Languages, and Applications, 1998.

[11] R. Tolksdorf. Coordinating Work on the Web with Work-
spaces. In Proceedings of the IEEE Ninth International
Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises WET ICE 2000. IEEE Computer
Society, Press, 2000.

[12] R. Tolksdorf. Coordination Technology for Workflows on
the Web: Workspaces. In Proceedings of the Fourth Interna-
tional Conference on Coordination Models and Languages
COORDINATION 2000, LNCS. Springer-Verlag, 2000.

[13] World Wide Web Consortium. Document Object Model
(DOM) Level 1 Specification. W3C Recommendation,
1998. http://www.w3.org/TR/REC-DOM-Level-1.

[14] World Wide Web Consortium. Extensible Markup
Language (XML) 1.0. W3C Recommendation, 1998.
http://www.w3.org/TR/REC-xml.

[15] World Wide Web Consortium. Document Object Model
(DOM) Level 2 Core Specification. W3C Recommendation,
2000. http://www.w3.org/TR/DOM-Level-2-Core.

[16] World Wide Web Consortium. Namespaces in XML. W3C
Recommendation, 2000. http://www.w3.org/TR/REC-xml-
names.

[17] P. Wyckoff, S. McLaughry, T. Lehman, and D. Ford.
T Spaces. IBM Systems Journal, 37(3):454–474, 1998.

[18] B. Y. Zhao and A. Joseph. The XSet XML Search Engine
and XBench XML Query Benchmark. Technical Report
UCB/CSD-00-1112, Computer Science Division (EECS),
University of California, Berkeley, 2000. September.

6


