Towards Swarm-based Federated Web Knowledgebases

Philipp Obermeier¹, Anne Augustin² and Robert Tolksdorf²

¹Digital Enterprise Research Institute, National University of Ireland, Galway philipp.obermeier@deri.org

²Freie Universität Berlin, Institut für Informatik, AG Netzbasierte Informationssysteme aaugusti@inf.fu-berlin.de, tolk@ag-nbi.de, http://www.ag-nbi.de

Contributions from Hannes Mühleisen² and Tilman Walther²
Modern networked applications need a scalable distributed storage infrastructure for semantic information.

Current RDF-stores are not distributed and not scalable.
out(<cat, colored, grey>)
in(<cat, colored, ?color)

The selforganized semantic storage service
S4
Data as food, query client as nest
Clusters are formed for each resource

(S,P,O) (S,P,O) (S,P,O)

(S,P,O)
Read:

Require: Template t, hop count h

1: while $h > 0$ do

2: $N = N \cup \{\text{currentNodeId}\}$

3: $T^t = \text{findMatchingTriples}(t)$

4: if not empty(T^t) then

5: $\text{spreadScentAndReturn}(t, N)$

6: return T^t

7: else

8: $\text{nextNode} \leftarrow \text{selectNextNode}(t)$

9: $\text{moveTo}(\text{nextNode})$

10: $h = h - 1$

11: end if

12: end while

13: return
Write:

\textbf{Require:} Triple to store T, index i, hop count h, drop limit l_d

1: \textbf{while} $h > 0$ \textbf{do}
2: \hspace{1cm} $N = N \cup \{current\text{NodeId}\}$
3: \hspace{1cm} $p_d = calc\text{DropProbability}(T_i, h)$
4: \hspace{1cm} \textbf{if} $p_d > l_d$ \textbf{then}
5: \hspace{2cm} \textit{storeTriple}(T)
6: \hspace{2cm} \textit{spreadScentAndReturn}(T_i, N)$
7: \hspace{1cm} \textbf{else}
8: \hspace{2cm} $next\text{Node} = select\text{NextNode}(T_i)$
9: \hspace{2cm} $move\text{To}(next\text{Node})$
10: \hspace{1cm} $h = h - 1$
11: \hspace{1cm} \textbf{end if}
12: \textbf{end while}
13: \textit{storeTriple}(T)
All creatures are equal...
... but some are more equal than others

http://animals.org/onto.rdf#cat
http://animals.org/onto.rdf#dog
URI Similarity:

Take pairwise Levenshtein-distance in host and path parts eg:

$$sim_{host} = \sum_{i=1}^{\min(k,l)} c_i \cdot edit(m_{k-i}, n_{l-i})$$

Weight components along their hierarchy, eg:

$$c_i = \frac{2^{\max(k,l)-i}}{2^{\max(k,l)} - 1}$$

Weight host and path importance, eg. 0.9/0.1

Cats and dogs from animal.org are quite similar:

$$1 \cdot 0.9 + \left(\frac{2}{3} \cdot 1 + \frac{1}{3} \cdot 0 \right) \cdot 0.1 = 0.96$$
Claim: Write scales with number of nodes

Mean time to write 100K dbpedia triples over 10 test runs
Claim: Read scales with number of nodes

Median of # of hops when querying a specific triple from all nodes once
is-a relations?
in(<?animal, colored, ?color)
in(<?animal, colored, ?color)
Design principle: Only local decisions

- Local similarity measure ontology \(\times \) triple
- No global ontology

Extended behaviour of out ants:
carry triple and local type hierarchy
learn underway and merge Aboxes
determine drop probability by similarity of type carried with type dominant on node
How to implement description-logic (ontological) reasoning under the swarm intelligence paradigm?

How to integrate a reasoner on top of the swarm-based storage layer?

Idea:
Terminological axioms represented as rules
Rule applications executed by “Reasoning Ants”
Operation of a Reasoning Ant by example

T-Box Axiom: \(\text{animal}(s) \sqsubseteq \text{flies}(s) \sqsubseteq \text{bird}(s) \)

Rule: \(\text{bird}(s) \leftarrow \text{animal}(s), \text{flies}(s) \)
Operation of a Reasoning Ant by example

T-Box Axiom: \(\text{animal}(s) \sqsubseteq \text{flies}(s) \sqsubseteq \text{bird}(s) \)

Rule: \(\text{bird}(s) \leftarrow \text{animal}(s), \text{flies}(s) \)

1. Ant traces scents of ground instances (encoded as RDF triples) matching its rule body atoms.
2. If adequate ground facts are found the ant applies the rule: a new fact is yielded.
3. Ant stores the new fact in appropriate clusters.

\[\text{animal}(x) \ ? \]
\[\text{flies}(x) \ ? \]
Operation of a Reasoning Ant by example

T-Box Axiom: \(\text{animal}(s) \sqsubseteq \text{flies}(s) \sqsubseteq \text{bird}(s) \)

Rule: \(\text{bird}(s) \leftarrow \text{animal}(s), \text{flies}(s) \)

1. Ant traces scents of ground instances (encoded as RDF triples) matching its rule body atoms.
2. If adequate ground facts are found the ant applies the rule: a new fact is yielded.
3. Ant stores the new fact in appropriate clusters.
Operation of a Reasoning Ant by example

T-Box Axiom: \(\text{animal}(s) \sqsubseteq \text{flies}(s) \sqsubseteq \text{bird}(s)\)

Rule: \(\text{bird}(s) \leftarrow \text{animal}(s), \text{flies}(s)\)

1. Ant traces scents of ground instances (encoded as RDF triples) matching its rule body atoms.
2. If adequate ground facts are found the ant applies the rule: a new fact is yielded.
3. Ant stores the new fact in appropriate clusters.
Swarm-Based Reasoning Layer

Description Logic ALC
 for knowledge representation central core of many significant description logics

Extended Disjunctive Rules
 as translation target for terminological axioms
 \[
 L_1 \text{ or } \ldots \text{ or } L_k \leftarrow L_{k+1}, \ldots, L_m, \text{ not } L_{m+1}, \ldots, \text{ not } L_n
 \]
 where \(L_i \) is a literal \(A \) or \(\neg A \) for an atom \(A \)

Partial Answer Set Semantics/Brave Reasoning
 as model-theoretic foundation
Cluster optimization
Range queries

Multilevel indexing
Geo/Temporal

Robustness
Stability
Security
Claim: Cluster reorganization scales

Data Items vs. Move Operations random/100nodes

of moves when inserting new triples