
Prof. Dr. Claudia Müller-Birn
Institute for Computer Science, Networked Information Systems

Course introduction &
basics of distributed
systems
Netzprogrammierung
(Algorithmen und Programmierung V)

2 Claudia Müller-Birn, Netzprogrammierung 2011/12

Our topics today
1  Motivating example

2  Class organization

3  Class schedule

4  Introduction to distributed systems

5  Levels of supporting distributed systems

6  Brief summary

3

One perspective

Claudia Müller-Birn, Netzprogrammierung 2011/12

4 net programming, winter term 2011/2012

ht
tp

://
up

lo
ad

.w
ik

im
ed

ia
.o

rg
/w

ik
ip

ed
ia

/c
om

m
on

s/
d/

d2
/In

te
rn

et
_m

ap
_1

02
4.

jp
g

5

Applications on the Internet
Significance of the internet increased as the population of computers connected to it
and the range of software supporting its use has grown

Internet supports a number of distributed applications, examples are
•  Mail
•  Usenet
•  World wide web (WWW)

! and today there is a bit more!

Claudia Müller-Birn, Netzprogrammierung 2011/12

6 Claudia Müller-Birn, Netzprogrammierung 2011/12

7

! and even more!

Claudia Müller-Birn, Netzprogrammierung 2011/12

8

Selected application domains and associated
networked applications

Claudia Müller-Birn, Netzprogrammierung 2011/12

Finance and commerce eCommerce e.g. Amazon and eBay, PayPal, online banking and
trading

The information society Web information and search engines, ebooks, Wikipedia; social
networking: Facebook, Twitter.

Creative industries and
entertainment

Online gaming, music and film in the home, user-generated content,
e.g. YouTube, Flickr

Healthcare Health informatics, on online patient records, monitoring patients

Education E-learning, virtual learning environments; distance learning

Transport and logistics GPS in route finding systems, map services: Google Maps, Google
Earth

Science Grid as an enabling technology for collaboration between scientists

Environmental management Sensor technology to monitor earthquakes, floods or tsunamis

9

Main drivers today
Increasing need for collaboration and connectivity
•  Connecting a vast quantities of geographically distributed information and

services, such as e-commerce sites, multimedia content, and encyclopedias
•  Popularity of social networks, instant messaging or chat rooms is another driver for

distributed systems

Increasing availability of different platforms
•  Computer networks that incorporate PDAs, laptops, PCs, and servers often offer a

better price/performance ratio than centralized mainframe computers
•  Selected application components and services can be delegated to run on nodes

with specialized processing attributes, such as high-performance disk controllers
or large amounts of memory

Claudia Müller-Birn, Netzprogrammierung 2011/12

(Tanenbaum, 1995)

11

Scope of this course

„In this class you will learn about principles, methods,
languages and middleware for developing

distributed systems, especially web-based applications.“

We will not talk about
•  Theory of computer networks
•  Telematics
•  Theory of distributed systems
•  Design of distributed algorithms
•  Design of distributed databases

Claudia Müller-Birn, Netzprogrammierung 2011/12

12

Course organization

Claudia Müller-Birn, Netzprogrammierung 2011/12

13

Context of this course
Module is part of the algorithms and programming slot in the bachelor program

Normally in the 5th semester of your study

The class material is now mostly ! in English

This year we slightly changed the structure of this course, and therefore, home
assignments might differ from last year‘s course

Since we changed this course, your feedback is appreciated!

Claudia Müller-Birn, Netzprogrammierung 2011/12

14

Goal of this course
At the end of this course, you should be able to

•  Differentiate relevant interaction paradigms such as client/server or peer-to-peer
•  Knowing the different levels of support for distributed computing
•  Develop distributed software based on local inter-process communication (remote

procedure calls) as well as socket-based network communication
•  Implement distributed software based on Java RMI
•  Knowing middleware technologies and understanding their differences
•  Describe the main design principles of cloud computing and its application areas
•  Development of web-based, distributed software based on relevant standards

Claudia Müller-Birn, Netzprogrammierung 2011/12

15

Our team
Instructor: Claudia Müller-Birn

Teaching assistants
•  Dominik Weidemann
•  Julius Auer
•  Marco Träger

Register! Our main communication instrument is our mailing list:
https://lists.spline.inf.fu-berlin.de/mailman/listinfo/alp5-ws11

Please do not contact us in a one-one-manner, use always one-to-many for general,
course- or assignment-related questions! If you have specific questions regarding a
tutorial contact the respective teaching assistant.

Claudia Müller-Birn, Netzprogrammierung 2011/12

17

General course organization
The lecture takes place each Tuesday, 12 - 14 PM, in room HS Großer Hörsaal
(Takustraße 9)

Our website: http://blog.ag-nbi.de/2011/10/07/alp-v-netzprogrammierung/

Additionally, you have to attend one of the offered labs which take place every
Wednesday. The lab will start next week (2011-10-26)! The registration is
mandatory. Do not switch between labs.

Claudia Müller-Birn, Netzprogrammierung 2011/12

18

Lab organization – lab schedule changed!
Please note, there is one change in our lab schedule.

Please check out our webpage/KVV for details.

Lab 1: Wed 10 AM - 12 PM - SR 055 (Takustraße 9)
Lab 2: Wed 10 AM - 12 PM - SR 046 (Takustraße 9)
Lab 3: Wed 12 PM - 2 PM - SR 006 (Takustraße 9)
Lab 4: Wed 12 PM - 2 PM - HS Großer Hörsaal (Takustraße 9)
Lab 4: Wed 2 PM - 4 PM - SR 006 (Takustraße 9)
Lab 5: Wed 2 PM - 4 PM - SR 049 (Takustraße 9)
Lab 6: Wed 4 PM - 6 PM - SR 055 (Takustraße 9)

Claudia Müller-Birn, Netzprogrammierung 2011/12

19

Grading
Your final grade is only based on the result of your written exam.

But

In order to actively participate in this course, you need to fulfill ALL of the following
requirements
•  you have to submit (n-2) of all assignments that are distributed in the labs,
•  you need to get at least 50 % of all points in each assignment,
•  you must present at least one assignment,
•  the mean (= average) of all your assignments need to be above 60 %.

Claudia Müller-Birn, Netzprogrammierung 2011/12

20

Organization of labs
Assignments
•  This semester we have weekly assignments
•  Each assignment is solved by one or a group of two students
•  Assignments are published every Tuesday after the lecture on our homepage
•  Deadline for assignments is Friday 10 AM mostly of the following week

Typical structure of a lab meeting

Claudia Müller-Birn, Netzprogrammierung 2011/12

Presentation of Assignment 1
(submitted last Friday)

Discussing of Assignment 2
(published last Tuesday)

Preparing Assignment 3
(submission deadline next Friday)

21

Submission of assignments
Please send your assignments in an electronic format per email to your teaching
assistant AND for the printed version use the physical mail boxes in the institute!

Your email subject MUST have the following structure
[APLV] Übungsblatt XX – Tutorium X - Gruppennummer XX

Beispiel
[APLV] Übungsblatt 1 – Tutorium 3 - Gruppe 6

In the case of multiple submissions from one group, only the most recent zip file will
be marked. Please be sure to include everything necessary within one zip file. Files
not included cannot be marked. Usual rules apply: late submissions get zero.

The marks for each assignment will be returned by the next lab meeting.

Claudia Müller-Birn, Netzprogrammierung 2011/12

22

Preliminary lecture schedule
18.10.2011

Introduction and overview of class
Technologies for supporting distribution

25.10.2011

Architectures of distributed systems

01.11.2011

Ad hoc network programming (communication over sockets)

08.11.2011 Structured communication (RPC)

15.11.2011 Middleware – general introduction and overview
Distributed object component middleware I (Java RMI)

22.11.2011

Distributed object component middleware II (Java RMI)
Distributed object component middleware (CORBA 2.x)

29.11.2011 Component middleware I (OMG with CORBA Component Model)

06.12.2011 Component middleware II (Microsoft with .NET)

Claudia Müller-Birn, Netzprogrammierung 2011/12

23

Preliminary lecture schedule
13.12.2011

Component middleware III (Sun with JavaBeans)

03.01.2012

Service-oriented architectures and web services

10.01.2012

Applications of distributed computing I: Cloud computing

17.01.2012

Applications of distributed computing II: World wide web

24.01.2012 Web application development I: HTTP, client side processing (e.g.,
CGI, Servlets, SSI, JSP)

31.01.2012 Web application development II: server side processing (e.g., PHP)

07.02.2012 Summary and preparing the exam

14.02.2012 Exam

Claudia Müller-Birn, Netzprogrammierung 2011/12

26

Recommended literature (part 1)

Claudia Müller-Birn, Netzprogrammierung 2011/12

Distributed Systems: Concepts and Design
George Coulouris, Jean Dollimore, Tim Kindberg
4th edition, 2005

Pattern-Oriented Software Architecture Volume 4: A
Pattern Language for Distributed Computing
Frank Buschmann, Kevlin Henney, Douglas C. Schmidt
1st edition, 2007

Prof. Dr. Claudia Müller-Birn
Institute for Computer Science, Networked Information Systems

Questions?

Net Programming, winter term 2011/2012

28

Basics of distributed systems
Introduction

Net Programming, winter term 2011/2012

29

„A distributed system is one

in which the failure of a computer
you didn't even know existed

can render your own computer unusable.“
Leslie Lamport 1987

Claudia Müller-Birn, Netzprogrammierung 2011/12

30

Defining a distributed system
“A distributed system consists of a collection of autonomous computer linked by a
computer network and equipped with distributed system software. Distributed system
software enables computers to coordinate their activities and to share the resources
of the system – hardware, software, and data – ” (Coulouris et al., 1994)

“[!] so that users perceive the system as a single, integrated computing facility.”

“Most computer software today runs in distributed systems, where the interactive
presentation, application business processing, and data resources reside in loosely-
coupled computing nodes and service tiers connected together by
networks.” (Buschmann et al., 2007)

Claudia Müller-Birn, Netzprogrammierung 2011/12

31

Characteristics of !
Centralized System

•  One component with non-
autonomous parts

•  Component shared by users all the
time

•  All resources accessible

•  Software runs in a single process

•  Single point of control

•  Single point of failure

Distributed System

•  Multiple autonomous components

•  Components are not shared by all
users

•  Resources may not be accessible

•  Software runs in concurrent
processes on different processors

•  Multiple points of control

•  Multiple points of failure

Claudia Müller-Birn, Netzprogrammierung 2011/12

32

Design principles of distributed systems

Claudia Müller-Birn, Netzprogrammierung 2011/12

Heterogeneity

Openness

Security

Scalability

Failure handling

Transparency

33

Heterogeneity
(= variety and difference) apply to the following
•  Networks
•  Computer hardware
•  Operating systems
•  Programming languages
•  Implementation by different developers

Possible solutions that address heterogeneity
•  Middleware

•  Software layer that provides a programming abstraction as well as masking the
heterogeneity of the underlying networks, hardware, operating system and
programming language

•  Virtual machine
•  Approach to make code executable on any hardware, for example the Java

compiler produces code for the Java virtual machine
Claudia Müller-Birn, Netzprogrammierung 2011/12

34

Openness
Openness is concerned with extensions and improvements of distributed systems. It
is primarily determined by the degree to which new resource-sharing services can be
added and be made available for use by a variety of client programs.

Requirements
•  Key interfaces of components need to be published
•  New components have to be integrated with existing components
•  Differences in data representation of interface types on different processors (of

different vendors) have to be resolved by published standards

Request for comments (RFC)
•  Document collection published by the Internet Engineering Task Force (IETF)

describing methods, behaviors, research, or innovations applicable to the working
of the Internet and Internet-connected systems

Claudia Müller-Birn, Netzprogrammierung 2011/12

35

Security
Security for information resources has three components
•  Confidentiality – protection against disclosure to unauthorized individuals
•  Integrity – protection against alteration or corruption
•  Availability – protection against interference with the means to access the

recourses

Examples
•  Doctors request access to health care information of their patients
•  Users send credit card numbers across the Internet

What are security threads here? And how can we solve them?

Claudia Müller-Birn, Netzprogrammierung 2011/12

36

Scalability
A system is described as scalable if it will remain effective when there is a significant
increase in the number of resources and the number of users.

Adaption of distributed systems to
•  accommodate more users
•  respond faster (this is the hard one)

Usually done by adding more and/or faster processors.
Components should not need to be changed when scale of a system increases.
Design components in a way that they are scalable!

Claudia Müller-Birn, Netzprogrammierung 2011/12

37

Failure handling
Hardware, software and networks fail!

Distributed systems must maintain availability even at low levels of hardware/
software/network reliability.

Fault tolerance is achieved by

•  Recovery
•  Redundancy

Recovery from failures involves the design of software so that the state of permanent
data can be recovered or ‘rolled back’ after a server has crashed.

Redundancy means that services can be made to tolerate failures by the use of
redundant components.

Claudia Müller-Birn, Netzprogrammierung 2011/12

38

Transparency
Distributed systems should be perceived by users and application programmers as a
whole rather than as a collection of cooperating components.

Transparency has different dimensions that were identified by ANSA Reference
Manual (ANSA 1998). These represent various properties that distributed systems
should have.

Claudia Müller-Birn, Netzprogrammierung 2011/12

Scalability
Transparency

Migration
Transparency

Access
Transparency

Performance
Transparency

Replication
Transparency

Location
Transparency

Concurrency
Transparency

Failure
Transparency

39

Access transparency
•  Enables local and remote resources to be accessed using identical operations
•  Examples: File system operations in NFS, navigation in the Web, SQL Queries

Location transparency
•  Enables resources to be accessed without knowledge of their physical or network

location (for example, which building or IP address)
•  Examples: File system operations in NFS, pages in the Web, tables in distributed

databases

Concurrency transparency
•  Enables several processes to operate concurrently using shared resources without

interference between them
•  Examples: NFS, automatic teller machine, database management system

Claudia Müller-Birn, Netzprogrammierung 2011/12

40

Replication transparency
•  Enables multiple instances of resources to be used to increase reliability and

performance without knowledge of the replicas by users or application
programmers

•  Examples: Distributed DBMS, Mirroring Web Pages

Failure transparency
•  Enables the concealment of faults, allowing users and application programs to

complete their tasks despite the failure of hardware or software components
•  Examples: Database Management System

Claudia Müller-Birn, Netzprogrammierung 2011/12

41

Migration transparency
•  Allows the movement of resources and clients within a system without affecting

the operation of users or programs
•  Examples are NFS, Web pages

Performance transparency
•  Allows the system to be reconfigured to improve performance as loads vary
•  Examples are distributed make

Scaling transparency
•  Allows the system and applications to expand in scale without change to the

system structure or the application algorithms
•  Examples are World Wide Web, distributed database

Claudia Müller-Birn, Netzprogrammierung 2011/12

44

Challenges of distribution
Inherent complexities
•  Components of a distributed system often reside in separate address spaces on

separate nodes, so inter-node communication needs different mechanisms,
policies, and protocols

•  Synchronization and coordination is more complicated since components may run
in parallel and network communication can be asynchronous and non-
deterministic

•  Networks that connect components introduce additional forces, such as latency,
jitter, transient failures, and overload

Accidental complexities
•  Limitations with software tools and development techniques, such as non-portable

programming APIs and poor distributed debuggers
•  New layers of distributed infrastructure are conceived and released, not all of

which are equally mature or capable, which complicates development, integration,
and evolution of working systems

Claudia Müller-Birn, Netzprogrammierung 2011/12

(Schmidt, et al. 2002)

45

Challenges of distribution (cont.)
Inadequate methods and techniques
•  Popular software analysis methods and design techniques such as UML (Dennis

et al., 2004) have focused on constructing single-process, single-threaded
applications with ‘best-effort’ QoS requirements

•  Development of high-quality distributed systems (e.g., video-conferencing, air
traffic control systems), has been left to the expertise of skilled software architects
and engineers

Continuous re-invention and re-discovery of core concepts and techniques
•  Software industry has a long history of recreating incompatible solutions to

problems that have already been solved
•  If effort had instead been focused on enhancing a smaller number of solutions,

developers of distributed system software would be able to innovate more rapidly
by reusing common tools and standard platforms and components

Claudia Müller-Birn, Netzprogrammierung 2011/12

(Schmidt, et al. 2002)

46

Technologies for supporting
distribution

Basics of distributed systems

Claudia Müller-Birn, Netzprogrammierung 2011/12

47

Levels of support for distributed computing

Claudia Müller-Birn, Netzprogrammierung 2011/12

Ad hoc network programming

Structured communication

Middleware

(Buschmann, et al., 2007)

48

Ad hoc network programming
Interprocess communication (IPC) mechanisms, such as shared memory, pipes, and
sockets, allow distributed components to connect and exchange information

IPC mechanisms enable components from different address spaces to cooperate
with one another

Drawbacks when developing distributed systems only using ad hoc network
programming support
•  Using sockets directly within application code tightly couples this code to the

socket API -> porting this code to another IPC mechanism or redeploying
components to different nodes in a network becomes a costly manual
programming effort

•  Programming directly to an IPC mechanism can also cause a paradigm mismatch,
for example, local communication uses object-oriented classes and method
invocations, whereas remote communication uses the function-oriented socket API
and message passing

Claudia Müller-Birn, Netzprogrammierung 2011/12

(Buschmann, et al., 2007)

49

Structured communication
Overcomes limitations with ad hoc network programming by not coupling application
code to low-level IPC mechanisms

Offers higher-level communication mechanisms to distributed systems

Encapsulates machine-level details, such as bits and bytes and binary reads and
writes

Provides a programming model that embodies types and a communication style
closer to their application domain

Significant examples of structured communication are Remote Procedure Call (RPC)
platforms

Claudia Müller-Birn, Netzprogrammierung 2011/12

(Buschmann, et al., 2007)

50

RPC platforms
Allow distributed applications to cooperate with one another much like they would in a
local environment

Invoke functions on each other, pass parameters along with each invocation, and
receive results from the functions they called

Shields functions from details of specific IPC mechanisms and low-level operating
system APIs

For more complex distributed systems structured communication does not fulfill all
properties needed
•  Location-independence of components
•  Flexible component (re)deployment
•  Integration of legacy code
•  Heterogeneous components

Claudia Müller-Birn, Netzprogrammierung 2011/12

(Buschmann, et al., 2007)

51

Middleware
Distribution infrastructure software that resides between an application and the
operating system, network, or database underneath it

Middleware allow application developers to focus on their primary responsibility:
implementing their domain-specific functionality

Different parties developed technologies for distributed computing
•  companies such as Microsoft, IBM, and Sun
•  consortia, such as the Object Management Group (OMG) and the World Wide

Web Consortium (W3C)

Claudia Müller-Birn, Netzprogrammierung 2011/12

(Buschmann, et al., 2007)

52

Middleware technologies

Claudia Müller-Birn, Netzprogrammierung 2011/12

Distributed object computing middleware

Component middleware

Publish/subscribe middleware

Service-oriented architectures and Web Services

(Buschmann, et al., 2007)

53

Distributed Object Computing Middleware
Emerged in late 1980s and early 1990s

Represented the confluence of two major information technologies:
•  RPC-based distributed computing systems
•  object-oriented design and programming

Used object-oriented techniques to distribute reusable services and applications
efficiently, flexibly, and robustly over multiple, often heterogeneous, computing and
networking elements

Examples
•  CORBA 2.x
•  Java RMI

Claudia Müller-Birn, Netzprogrammierung 2011/12

(Buschmann, et al., 2007)

54

Component Middleware
Starting in the mid to late 1990s to overcome limitations (we will talk about it in the
following lecture in detail) of DOC middleware

Allows a group of cohesive component objects to interact with each other through
multiple provided and required interfaces and defines standard runtime mechanisms
needed to execute these component objects in generic applications servers

component middleware also often specifies the infrastructure to package, customize,
assemble, and disseminate components throughout a distributed system

Examples
•  Enterprise JavaBeans
•  CORBA Component Model (CCM)

Claudia Müller-Birn, Netzprogrammierung 2011/12

(Buschmann, et al., 2007)

55

Message-Oriented Middleware
RPC platforms, DOC middleware, and component middleware are all based on a
request/response communication model
•  Requests flow from client to server and responses flow back from server to client

Problem: certain types of distributed applications are not well-suited certain aspects
of the request/response communication model
•  Synchronous communication between the client and server, which can underutilize

the parallelism available in the network and end systems
•  Designated communication, where the client must know the identity of the server,

which tightly couples it to a particular recipient
•  Point-to-point communication, where a client talks with just one server at a time,

which can limit its ability to convey its information to all interested recipients

Message-Oriented Middleware are mostly proprietary systems.

Claudia Müller-Birn, Netzprogrammierung 2011/12

(Buschmann, et al., 2007)

56

Service-Oriented Architectures
‘SOA’ was originally coined in the mid-1990’s

Generalize interoperability middleware standards available at the time

Is a style of organizing and utilizing distributed capabilities that may be controlled by
different organizations or owners

Provides a uniform means to offer, discover, interact with and use capabilities of
loosely coupled and interoperable software services to support the requirements of
the business processes and application users

Includes protocols or specifications such as
•  SOAP (Simple Object Access Protocol)
•  Web Services and WSDL (Web Service Description Language)

 Claudia Müller-Birn, Netzprogrammierung 2011/12

(Buschmann, et al., 2007)

57

Summary
We talked about

•  Typical application areas for distributed systems

•  Definition for distributed systems

•  Centralized vs. distributed systems

•  Design principles of distributed systems

•  Technologies for supporting distribution
•  Ad hoc network programming
•  Structured communication
•  Middleware

Claudia Müller-Birn, Netzprogrammierung 2011/12

58

Communication in and architecture of
distributed systems

Next lecture:

Claudia Müller-Birn, Netzprogrammierung 2011/12

59

References
Dennis, B. Haley Wixom, D. Tegarden: Systems Analysis and Design with UML
Version 2.0: An Object-Oriented Approach, John Wiley & Sons, 2004
George Coulouris, Jean Dollimore, Tim Kindberg: Distributed Systems: Concepts and
Design. 4th edition, Addison Wesley, 2005
Frank Buschmann, Kevlin Henney, Douglas C. Schmidt: Pattern-Oriented Software
Architecture Volume 4: A Pattern Language for Distributed Computing, Wiley, 2007

Claudia Müller-Birn, Netzprogrammierung 2011/12

