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Our topics today 
UDP Style request-reply protocols 
•  Failure model of UDP request-reply protocol 
 
Use of TCP streams to implement request-reply protocol 
•  HTTP: an example of a request-reply protocol 
 
Remote procedure call 
 
Remote Method invocation 
•  The distributed object model 
•  Implementation of RMI 
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Middleware layers  
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Applications, services 

Remote invocation, indirect communication 

Underlying inter-process communication primitives: 
Sockets, message passing, multicast support 

UDP and TCP 

Middleware 
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UDP Style request-reply protocols 
Remote invocation 
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UDP style request-reply protocol 
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Operations of the request-reply protocol (UDP) 
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public byte[] doOperation (RemoteRef s, int operationId, byte[] arguments) 
     sends a request message to the remote server and returns the reply.  
     The arguments specify the remote server, the operation to be invoked and the 
           arguments of that operation. 
 
public byte[] getRequest (); 
    acquires a client request via the server port. 
 
public void sendReply (byte[] reply, InetAddress clientHost, int clientPort);  
    sends the reply message reply to the client at its Internet address and port. 



8 

Request-reply message structure 
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Message identifiers 
Unique message identifies is needed for any scheme that involves 
management of messages to provide additional properties such as  
•  reliable delivery  
•  request-reply communication 

Parts of a message identifier 
•  requestID, which is taken from an increasing sequence of integers by the 

sending process 
•  an identifier for the sender process, for example, its port and Internet 

address 
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Failure model of UDP request-reply 
protocol 

UDP Style request-reply protocols 
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Approaches to handle failures 
Repeatedly request message 
•  doOperation sends the request message repeatedly until either it gets a 

reply or it is reasonable sure the the delay is due to lack of response from 
the server, rather than lost messages 

Discarding duplicate request messages 
•  Server may receive more than one request message, e.g. server needs 

longer than the client’s timeout to execute the command and return reply 
•  Problem: Operation is more than once executed to the same request 
•  Protocol is designed to recognize successive messages (from the same 

client) with the same request identifiers  
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Approaches to handle failures (cont.) 
Lost reply messages 
•  Problem: Server has already sent the reply when it receives a duplicate 

request it will need to execute the operation again to obtain the result 
•  Idempotent operation is an operation that can be performed repeatedly 

with the same effect as if it had been performed exactly once 
 
History 
•  Refer to a structure that contains a record of (reply) messages that have 

been transmitted 
•  Entry contains: request identifier, message, identifier of a client 
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Possible Exchange Protocols 

R  =  no response is needed and the client requires no  
  confirmation 

RR  =  a server’s reply message is regarded as an  
  acknowledgement 

RRA  =  Server may discard entries from its history 
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(Identified by Spector[1982]) 
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Use of TCP streams to implement request-
reply protocol 

Request-reply protocols 
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HTTP: an example of a request-reply protocol 
HTTP specifies the messages involved in a request-reply exchange, the 
methods, arguments and results, and the rules for representing (marshalling) 
them in the messages 

Fixed set of resources are applicable to all of server’s resources, e.g., GET, 
PUT, POST 
 
Additional functions 
•  Content negotiation: clients’ requests can include information as to what 

data presentation they can accept (e.g. language) 
•  Authentication: Credentials are used to support password-style 

authentication 
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Client/server interaction 
HTTP over TCP (original version) 
1.  The client requests and the server accepts a connection at the default 

server port or at the port specified in the URL. 

2.  The client sends a request message to the server. 

3.  The server sends a reply message to the client. 

4.  The connection is closed. 
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Client/server interaction 
HTTP 1.1 over TCP  
Usage of persistent connections  
 
Connections remain open over a series of request-reply exchanges between 
client and server 
 
Connection may be closed by client or server any time by sending an 
indication to the other participant 
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RFC 2616, (Fielding et al. 1999) 
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HTTP methods 
GET 
•  Requests the resource whose URL is given as its argument 
 
HEAD 
•  Request is identical to GET but does not return any data  
•  Returns all the information about the data such as time of last 

modification 

PUT 
•  Requests that the data supplied in the request is stored with the given 

URL as its identifier either as a modification of an existing resource or as 
a new resource 
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HTTP methods (cont.) 
POST 
•  Is used to send data to the server to be processed in some way 
•  Designed to deal with 

•  Providing a block of data to a data-handling process such as a servlet 
•  Posting a message to a mailing list or updating member details 
•  Extending a database with an append operation 

 
Additional methods: DELETE, OPTIONS, TRACE 
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Message contents 
HTTP request message 
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GET //www.dcs.qmw.ac.uk/index.html HTTP/ 1.1 

URL or pathname method HTTP version headers message body 

HTTP/1.1  200 OK  resource data 

HTTP version status code reason headers message body 

HTTP reply message 

Status code definitions and more: 
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html 
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Remote procedure call 
Remote invocation 
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Issues that are important to understand the 
concept 
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The style of programming promoted by RCP – programming with 
interfaces 

The call semantics associated with RPC 

The key issue of transparency and how it relates to remote procedure 
calls 



23 

Programming with interfaces 
Modern programming languages provide a means of organizing a program 
as a set of modules that can communicate with one another. 
 
Communication between modules can be by means of procedure calls 
between modules or by direct access to the variables in another module 
 
In order to control possible interactions between modules, an interface is 
defined for each module which specifies the procedures and variables that 
can be assessed.  
 
 

Claudia Müller-Birn, Netzprogrammierung 2011/12 



24 

Advantages of using interfaces in distributed 
systems 
Modular programming allows programmers to be concerned only with the 
abstraction offered by the service interface and they need not be aware of 
implementation details. 
 
Extrapolating to (potentially heterogeneous) distributed systems, 
programmers also do not need to know the programming language or 
underlying platform used to implement the services. 
 
Approach provides the natural support for software evolution in that 
implementations can change as long as the interface (the external view) 
remains the same. 
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RPC call semantics 
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RPC call semantics (cont.) 
Maybe semantics 
•  RPC may be executed once or not at all, it means that faults are not 

tolerated 
•  Can suffer from omission and crash failures 

At-least-once semantics 
•  Invoker receives either a result, in which case the procedure was 

executed at least once, or an exception informing that no result was 
received 

•  Can suffer from crash failures and arbitrary failures 

At-most-once semantics 
•  Caller receives either a result, then the procedure was executed once, or 

an exception, that no results has been received 
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Implementation of RPC 
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Remote method invocation (RMI) 
Remote invocation 
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Commonalities of RMI and RPC 
•  Support of programming languages with interfaces 

•  Both are typically constructed on top of the request-reply protocol  

•  Offer semantics such as at-least-once and at-most-once 

•  Offer a similar level of transparency, means local and remote calls 
employ the same syntax but remote interfaces expose the distributed 
nature for example by supporting remote exceptions 
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The distributed object model 
Remote method invocation 
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Remote and local method invocation 

Remote object reference: Other objects can invoke the methods of a remote 
object if they have access to its remote object reference.  
 
Remote interface: Every remote object has a remote interface that specifies 
which of its methods can be invoked remotely.  
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A remote object and its remote interface 
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Instantiation of remote objects 
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Implementation of RMI 
Remote method invocation   
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Generic RMI Modules 
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RMI software 
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The Communication Module 
Two cooperating communication modules carry out the request-reply 
protocol. 
 
Content of request and reply messages 
 
 
 
 
Communication modules provide together a specified invocation semantics.  
 
The communication module in the server selects the dispatcher for the class 
of the object to be invoked, passing on the remote object’s local reference. 
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The Remote Reference Module 
It is responsible for translating between local and remote object references 
and for creating remote object references.  
 
The remote reference module holds a table that records the correspondence 
between local object references in that process and remote object 
references (which are system wide). 
 
Table includes 
•  An entry for all remote objects held by the process 
•  An entry for each local proxy 
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Generic RMI Modules 
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RMI software 
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Summary 
Remote method invocation   
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We have we learned? 
•  Basic communication primitives of UDP style request-reply protocols 
•  Basic message structure of the request-reply protocol 
•  Advantages of choosing TCP for request-reply protocols 
•  HTTP: an example of a request-reply protocol 
•  Issues that are important to understand the remote procedure calls 
•  HTTP methods and their properties 
•  Importance of interfaces for RPC 
•  RPC call semantics 
•  Commonalities and differences of RMI and RPC 
•  Generic RMI Modules 
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Distributed object component middleware I 
(Java RMI) 

Next class 
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