
Prof. Dr. Claudia Müller-Birn
Institute for Computer Science, Networked Information Systems

Structured communication
(Remote invocation)

Nov 8th, 2011
Netzprogrammierung
(Algorithmen und Programmierung V)

2

Descriptive models for distributed system design

Architectural model

Our topics last week

Claudia Müller-Birn, Netzprogrammierung 2011/12

Physical
model

Architectural elements

Communicating
entities

Communication paradigm Roles and res-
ponsibilities

Placement

Inter-process communication

Remote
invocation

Indirect
communication

Processes

Objects

Components

Web Services

TCP
sockets

UDP
sockets

Multi-
cast

Architectural
styles

Client-server

Peer-to-peer

Multiple server

Proxy/Cache

Mobile code

Architectural patterns

Vertical distribution Horizontal distribution

Interaction
model

Multi-tier Thin/Fat Client

Interaction
model

Failure
model

Security
model

3

Our topics today
UDP Style request-reply protocols
•  Failure model of UDP request-reply protocol

Use of TCP streams to implement request-reply protocol
•  HTTP: an example of a request-reply protocol

Remote procedure call

Remote Method invocation
•  The distributed object model
•  Implementation of RMI

Claudia Müller-Birn, Netzprogrammierung 2011/12

4

Middleware layers

Claudia Müller-Birn, Netzprogrammierung 2011/12

Applications, services

Remote invocation, indirect communication

Underlying inter-process communication primitives:
Sockets, message passing, multicast support

UDP and TCP

Middleware
layers

5

UDP Style request-reply protocols
Remote invocation

Claudia Müller-Birn, Netzprogrammierung 2011/12

6

UDP style request-reply protocol

Claudia Müller-Birn, Netzprogrammierung 2011/12

Request

Server Client

doOperation

(wait)

(continuation)

Reply
message

getRequest

 execute method

message
select object

sendReply

7

Operations of the request-reply protocol (UDP)

Claudia Müller-Birn, Netzprogrammierung 2011/12

public byte[] doOperation (RemoteRef s, int operationId, byte[] arguments)
 sends a request message to the remote server and returns the reply.
 The arguments specify the remote server, the operation to be invoked and the
 arguments of that operation.

public byte[] getRequest ();
 acquires a client request via the server port.

public void sendReply (byte[] reply, InetAddress clientHost, int clientPort);
 sends the reply message reply to the client at its Internet address and port.

8

Request-reply message structure

Claudia Müller-Birn, Netzprogrammierung 2011/12

messageType

requestId

remoteReference

operationId

arguments

int (0=Request, 1= Reply)

int

RemoteRef

int or Operation

array of bytes

9

Message identifiers
Unique message identifies is needed for any scheme that involves
management of messages to provide additional properties such as
•  reliable delivery
•  request-reply communication

Parts of a message identifier
•  requestID, which is taken from an increasing sequence of integers by the

sending process
•  an identifier for the sender process, for example, its port and Internet

address

Claudia Müller-Birn, Netzprogrammierung 2011/12

10

Failure model of UDP request-reply
protocol

UDP Style request-reply protocols

Claudia Müller-Birn, Netzprogrammierung 2011/12

11

Approaches to handle failures
Repeatedly request message
•  doOperation sends the request message repeatedly until either it gets a

reply or it is reasonable sure the the delay is due to lack of response from
the server, rather than lost messages

Discarding duplicate request messages
•  Server may receive more than one request message, e.g. server needs

longer than the client’s timeout to execute the command and return reply
•  Problem: Operation is more than once executed to the same request
•  Protocol is designed to recognize successive messages (from the same

client) with the same request identifiers

Claudia Müller-Birn, Netzprogrammierung 2011/12

12

Approaches to handle failures (cont.)
Lost reply messages
•  Problem: Server has already sent the reply when it receives a duplicate

request it will need to execute the operation again to obtain the result
•  Idempotent operation is an operation that can be performed repeatedly

with the same effect as if it had been performed exactly once

History
•  Refer to a structure that contains a record of (reply) messages that have

been transmitted
•  Entry contains: request identifier, message, identifier of a client

Claudia Müller-Birn, Netzprogrammierung 2011/12

13

Possible Exchange Protocols

R = no response is needed and the client requires no
 confirmation

RR = a server’s reply message is regarded as an
 acknowledgement

RRA = Server may discard entries from its history

Claudia Müller-Birn, Netzprogrammierung 2011/12

(Identified by Spector[1982])

R Request

RR Reply

RRA Acknowledge reply

Request

Request Reply

Client Server Client

Name Messages sent by

14

Use of TCP streams to implement request-
reply protocol

Request-reply protocols

Claudia Müller-Birn, Netzprogrammierung 2011/12

15

HTTP: an example of a request-reply protocol
HTTP specifies the messages involved in a request-reply exchange, the
methods, arguments and results, and the rules for representing (marshalling)
them in the messages

Fixed set of resources are applicable to all of server’s resources, e.g., GET,
PUT, POST

Additional functions
•  Content negotiation: clients’ requests can include information as to what

data presentation they can accept (e.g. language)
•  Authentication: Credentials are used to support password-style

authentication

Claudia Müller-Birn, Netzprogrammierung 2011/12

16

Client/server interaction
HTTP over TCP (original version)
1.  The client requests and the server accepts a connection at the default

server port or at the port specified in the URL.

2.  The client sends a request message to the server.

3.  The server sends a reply message to the client.

4.  The connection is closed.

Claudia Müller-Birn, Netzprogrammierung 2011/12

17

Client/server interaction
HTTP 1.1 over TCP
Usage of persistent connections

Connections remain open over a series of request-reply exchanges between
client and server

Connection may be closed by client or server any time by sending an
indication to the other participant

Claudia Müller-Birn, Netzprogrammierung 2011/12

RFC 2616, (Fielding et al. 1999)

18

HTTP methods
GET
•  Requests the resource whose URL is given as its argument

HEAD
•  Request is identical to GET but does not return any data
•  Returns all the information about the data such as time of last

modification

PUT
•  Requests that the data supplied in the request is stored with the given

URL as its identifier either as a modification of an existing resource or as
a new resource

Claudia Müller-Birn, Netzprogrammierung 2011/12

19

HTTP methods (cont.)
POST
•  Is used to send data to the server to be processed in some way
•  Designed to deal with

•  Providing a block of data to a data-handling process such as a servlet
•  Posting a message to a mailing list or updating member details
•  Extending a database with an append operation

Additional methods: DELETE, OPTIONS, TRACE

Claudia Müller-Birn, Netzprogrammierung 2011/12

20

Message contents
HTTP request message

Claudia Müller-Birn, Netzprogrammierung 2011/12

GET //www.dcs.qmw.ac.uk/index.html HTTP/ 1.1

URL or pathname method HTTP version headers message body

HTTP/1.1 200 OK resource data

HTTP version status code reason headers message body

HTTP reply message

Status code definitions and more:
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

21

Remote procedure call
Remote invocation

Claudia Müller-Birn, Netzprogrammierung 2011/12

22

Issues that are important to understand the
concept

Claudia Müller-Birn, Netzprogrammierung 2011/12

The style of programming promoted by RCP – programming with
interfaces

The call semantics associated with RPC

The key issue of transparency and how it relates to remote procedure
calls

23

Programming with interfaces
Modern programming languages provide a means of organizing a program
as a set of modules that can communicate with one another.

Communication between modules can be by means of procedure calls
between modules or by direct access to the variables in another module

In order to control possible interactions between modules, an interface is
defined for each module which specifies the procedures and variables that
can be assessed.

Claudia Müller-Birn, Netzprogrammierung 2011/12

24

Advantages of using interfaces in distributed
systems
Modular programming allows programmers to be concerned only with the
abstraction offered by the service interface and they need not be aware of
implementation details.

Extrapolating to (potentially heterogeneous) distributed systems,
programmers also do not need to know the programming language or
underlying platform used to implement the services.

Approach provides the natural support for software evolution in that
implementations can change as long as the interface (the external view)
remains the same.

Claudia Müller-Birn, Netzprogrammierung 2011/12

25

RPC call semantics

Claudia Müller-Birn, Netzprogrammierung 2011/12

Fault tolerance measures Call
semantics

Retransmit request
message

Duplicate
filtering

Re-execute procedure
or retransmit reply

No

Yes

Yes

Not applicable

No

Yes

Not applicable

Re-execute procedure

Retransmit reply At-most-once

At-least-once

Maybe

26

RPC call semantics (cont.)
Maybe semantics
•  RPC may be executed once or not at all, it means that faults are not

tolerated
•  Can suffer from omission and crash failures

At-least-once semantics
•  Invoker receives either a result, in which case the procedure was

executed at least once, or an exception informing that no result was
received

•  Can suffer from crash failures and arbitrary failures

At-most-once semantics
•  Caller receives either a result, then the procedure was executed once, or

an exception, that no results has been received

Claudia Müller-Birn, Netzprogrammierung 2011/12

27

Implementation of RPC

Claudia Müller-Birn, Netzprogrammierung 2011/12

client

Request

Reply

Communication Communication
 module module dispatcher

service

client stub

server stub
procedure procedure

client process server process

procedure program

28

Remote method invocation (RMI)
Remote invocation

Claudia Müller-Birn, Netzprogrammierung 2011/12

29

Commonalities of RMI and RPC
•  Support of programming languages with interfaces

•  Both are typically constructed on top of the request-reply protocol

•  Offer semantics such as at-least-once and at-most-once

•  Offer a similar level of transparency, means local and remote calls
employ the same syntax but remote interfaces expose the distributed
nature for example by supporting remote exceptions

Claudia Müller-Birn, Netzprogrammierung 2011/12

30

The distributed object model
Remote method invocation

Claudia Müller-Birn, Netzprogrammierung 2011/12

31

Remote and local method invocation

Remote object reference: Other objects can invoke the methods of a remote
object if they have access to its remote object reference.

Remote interface: Every remote object has a remote interface that specifies
which of its methods can be invoked remotely.

Claudia Müller-Birn, Netzprogrammierung 2011/12

invocation invocation
remote

invocation
remote

local
local

local
invocation

invocation
A B

C

D

E

F

32

A remote object and its remote interface

Claudia Müller-Birn, Netzprogrammierung 2011/12

interface
remote

m1
m2
m3

m4
m5
m6

Data

implementation

remote object

{ of methods

33

Instantiation of remote objects

Claudia Müller-Birn, Netzprogrammierung 2011/12

invocation
remote

invocation

remote

C M
K

L

N

instantiate instantiate invocation invocation
remote

invocation
remote

local
local

local
invocation

invocation
A B

C

D

E

F

34

Implementation of RMI
Remote method invocation

Claudia Müller-Birn, Netzprogrammierung 2011/12

35

Generic RMI Modules

Claudia Müller-Birn, Netzprogrammierung 2011/12

RMI software

36

The Communication Module
Two cooperating communication modules carry out the request-reply
protocol.

Content of request and reply messages

Communication modules provide together a specified invocation semantics.

The communication module in the server selects the dispatcher for the class
of the object to be invoked, passing on the remote object’s local reference.

Claudia Müller-Birn, Netzprogrammierung 2011/12

messageType

requestId

remoteReference

37

The Remote Reference Module
It is responsible for translating between local and remote object references
and for creating remote object references.

The remote reference module holds a table that records the correspondence
between local object references in that process and remote object
references (which are system wide).

Table includes
•  An entry for all remote objects held by the process
•  An entry for each local proxy

Claudia Müller-Birn, Netzprogrammierung 2011/12

38

Generic RMI Modules

Claudia Müller-Birn, Netzprogrammierung 2011/12

RMI software

39

Summary
Remote method invocation

Claudia Müller-Birn, Netzprogrammierung 2011/12

40

We have we learned?
•  Basic communication primitives of UDP style request-reply protocols
•  Basic message structure of the request-reply protocol
•  Advantages of choosing TCP for request-reply protocols
•  HTTP: an example of a request-reply protocol
•  Issues that are important to understand the remote procedure calls
•  HTTP methods and their properties
•  Importance of interfaces for RPC
•  RPC call semantics
•  Commonalities and differences of RMI and RPC
•  Generic RMI Modules

Claudia Müller-Birn, Netzprogrammierung 2011/12

41

Descriptive models for distributed system design

Architectural model

Our topics today

Claudia Müller-Birn, Netzprogrammierung 2011/12

Physical
model

Architectural elements

Communicating
entities

Communication paradigm Roles and res-
ponsibilities

Placement

Inter-process communication

Remote
invocation

Indirect
communication

Processes

Objects

Components

Web Services

TCP
sockets

UDP
sockets

Multi-
cast

Architectural
styles

Client-server

Peer-to-peer

Multiple server

Proxy/Cache

Mobile code

Architectural patterns

Vertical distribution Horizontal distribution

Interaction
model

Multi-tier Thin/Fat Client

Interaction
model

Failure
model

Security
model

42

Distributed object component middleware I
(Java RMI)

Next class

Claudia Müller-Birn, Netzprogrammierung 2011/12

43

References
Main resource for this lecture:
George Coulouris, Jean Dollimore, Tim Kindberg: Distributed Systems:
Concepts and Design. 5th edition, Addison Wesley, 2011

Claudia Müller-Birn, Netzprogrammierung 2011/12

