
Prof. Dr. Claudia Müller-Birn
Institute for Computer Science, Networked Information Systems

Remote invocation, part II
(case study: Java RMI)

Netzprogrammierung
(Algorithmen und Programmierung V)

2

Descriptive models for distributed system design

Architectural model

Our topics last week

Claudia Müller-Birn, Netzprogrammierung 2011/12

Physical
model

Architectural elements

Communicating
entities

Communication paradigm Roles and res-
ponsibilities

Placement

Inter-process communication

Remote
invocation

Indirect
communication

Processes

Objects

Components

Web Services

TCP
sockets

UDP
sockets

Multi-
cast

Architectural
styles

Client-server

Peer-to-peer

Multiple server

Proxy/Cache

Mobile code

Architectural patterns

Vertical distribution Horizontal distribution

Interaction
model

Multi-tier Thin/Fat Client

Interaction
model

Failure
model

Security
model

3

Our topics today
Review: The process of remote method invocation

Java RMI architecture and its layers
Stub and Skeleton layer
•  Proxy design pattern
•  Reflections
Remote Reference Layer
Transport Layer

Continuing with our Java RMI example: shared whiteboard

Claudia Müller-Birn, Netzprogrammierung 2011/12

4

Java RMI architecture

Claudia Müller-Birn, Netzprogrammierung 2011/12

5

Components of the RMI architecture

Claudia Müller-Birn, Netzprogrammierung 2011/12

client

object A
proxy
for B

server

remote
object B

 Skeleton &
 dispatcher
 for B’s class

remote reference
module

communication
module

remote reference
module

request

reply

servant

6

Separation of concerns
RMI architecture is based on one important principle: the definition of behavior and
the implementation of that behavior are separate concepts.

RMI allows the code that defines the behavior and the code that implements the
behavior to remain separate and to run on separate JVMs.

Claudia Müller-Birn, Netzprogrammierung 2011/12

Interface

Client program

Implementation

Server program

RMI
system

7

Implementation of the interface

Claudia Müller-Birn, Netzprogrammierung 2011/12

Service Proxy

Client

Service
Implementation

Server

«Interface»
Service

RMI
“Magic”

8

RMI Architecture Layers
Java RMI architecture

Claudia Müller-Birn, Netzprogrammierung 2011/12

9

Abstraction layers in the RMI implementation
1.  Stub and Skeleton layer

Intercepts method calls made by the client to the interface reference variable and
redirects these calls to a remote RMI service

2.  Remote Reference Layer
Interpret and manage references made from clients to the remote service objects

3.  Transport layer
Is based on TCP/IP connections between machines in a network
Provides basic connectivity, as well as some firewall penetration strategies

Claudia Müller-Birn, Netzprogrammierung 2011/12

Remote Reference Layer Remote Reference Layer

Stubs & Skeletons

Client Program

Stubs & Skeletons

Server Program

Transport Layer

RMI
system

10

Stub and Skeleton Layer
RMI Architecture Layers

Claudia Müller-Birn, Netzprogrammierung 2011/12

Remote Reference Layer Remote Reference Layer

Stubs & Skeletons

Client Program

Stubs & Skeletons

Server Program

Transport Layer

RMI
system

11

Stub and Skeleton Layer
RMI uses the Proxy design pattern
•  Stub class is the proxy
•  Remote service implementation class is the RealSubject

Skeleton is a helper class
•  Carries on a conversation with the stub
•  Reads the parameters for the method call ! makes the call to the remote service

implementation object ! accepts the return value ! writes the return value back
to the stub

•  Please note: In the Java 2 SDK implementation of RMI, the new wire protocol has
made skeleton classes obsolete. RMI uses reflection to make the connection to
the remote service object.

Claudia Müller-Birn, Netzprogrammierung 2011/12

12

Proxy design pattern
Motivation
Provide a surrogate or placeholder for another object to control access to it

Implementation

Claudia Müller-Birn, Netzprogrammierung 2011/12

13

Proxy design pattern: Applications
Virtual Proxies: delaying the creation and initialization of expensive objects until
needed, where the objects are created on demand.

Remote Proxies: providing a local representation for an object that is in a different
address space. A common example is Java RMI stub objects. The stub object acts
as a proxy where invoking methods on the stub would cause the stub to
communicate and invoke methods on a remote object (called skeleton) found on a
different machine.

Protection Proxies: where a proxy controls access to RealSubject methods, by
giving access to some objects while denying access to others.

Smart References: providing a sophisticated access to certain objects such as
tracking the number of references to an object and denying access if a certain
number is reached, as well as loading an object from database into memory on
demand.
Claudia Müller-Birn, Netzprogrammierung 2011/12

14

Reflections
•  Reflection enables Java code to discover information about the fields, methods

and constructors of loaded classes, and
•  To use reflected fields, methods, and constructors to operate on their underlying

counterparts on objects, within security restrictions.
•  More information: http://download.oracle.com/javase/tutorial/reflect/

Using Reflection in RMI
•  Proxy has to marshal information about a method and its arguments into a request

message.
•  For a method it marshals an object of class Method into the request. It then adds an

array of objects for the method’s arguments.
•  The dispatcher unmarshals the Method object and its arguments from request

message.
•  The remote object reference is obtained from remote reference module.
•  The dispatcher then calls the Method object’s “invoke” method, supplying the target

object reference and the array of argument values.
•  After the method execution, the dispatcher marshals the result or any exceptions

into the reply message.

Claudia Müller-Birn, Netzprogrammierung 2011/12

15

Remote Reference Layer
RMI Architecture Layers

Claudia Müller-Birn, Netzprogrammierung 2011/12

Remote Reference Layer Remote Reference Layer

Stubs & Skeletons

Client Program

Stubs & Skeletons

Server Program

Transport Layer

RMI
system

16

Remote Reference Layer
Defines and supports the invocation semantics of the RMI connection
Provides a RemoteRef object that represents the link to the remote service
implementation object

JDK 1.1 implementation of RMI
•  Provides a unicast, point-to-point connection
•  Before a client can use a remote service, the remote service must be instantiated

on the server and exported to the RMI system

Java 2 SDK implementation of RMI
•  When a method call is made to the proxy for an activatable object, RMI determines

if the remote service implementation object is dormant
•  If yes, RMI will instantiate the object and restore its state from a disk file

Claudia Müller-Birn, Netzprogrammierung 2011/12

17

Transport Layer
RMI Architecture Layers

Claudia Müller-Birn, Netzprogrammierung 2011/12

Remote Reference Layer Remote Reference Layer

Stubs & Skeletons

Client Program

Stubs & Skeletons

Server Program

Transport Layer

RMI
system

18

Transport Layer
The Transport Layer makes the connection between JVMs. All connections are
stream-based network connections that use TCP/IP.

On top of TCP/IP, RMI uses a wire level protocol called Java Remote Method
Protocol (JRMP). JRMP is a proprietary, stream-based protocol that is only partially
specified in two versions:
•  First version was released with the JDK 1.1 version of RMI and required the use of

Skeleton classes on the server.
•  Second version was released with the Java 2 SDK. It has been optimized for

performance and does not require skeleton classes.

Claudia Müller-Birn, Netzprogrammierung 2011/12

19

Naming Remote Objects
Java RMI architecture

Claudia Müller-Birn, Netzprogrammierung 2011/12

20

Naming Remote Objects

RMI includes a simple service called the RMI Registry, rmiregistry.

The RMI Registry runs on each machine that hosts remote service objects and
accepts queries for services, by default on port 1099.

Claudia Müller-Birn, Netzprogrammierung 2011/12

How does a client find a RMI remote service?

21

Naming Remote Objects (cont.)

Claudia Müller-Birn, Netzprogrammierung 2011/12

Server program Client program

Creates a remote service
by creating a local object

Export object to RMI

Register object in the
RMI Registry

Queries RMI Registry by
method lookup()

rmi://<host_name>[:<name_service_port>]/<service_name>

22

Factory Design Pattern
Java RMI architecture

Claudia Müller-Birn, Netzprogrammierung 2011/12

23

Examples

Claudia Müller-Birn, Netzprogrammierung 2011/12

1

http://www.flickr.com/photos/23065375@N05/

2

http://www.flickr.com/photos/dunedinpubliclibraries/

24

Factory Design Pattern

Claudia Müller-Birn, Netzprogrammierung 2011/12

25

How could the examples be implemented in
Java RMI?

Claudia Müller-Birn, Netzprogrammierung 2011/12

1 public interface AccountManager extends Remote {
 public Account createAccount() throws RemoteException;

}

public interface Account extends Serializable {

 public depositMoney();
 …

}

2 public interface Librarian extends Remote {
 public LibraryCard createLibraryCard() throws RemoteException;

}

public interface LibraryCard extends Serializable {

 …
 }

26

Dynamic code downloading using RMI
Java RMI architecture

Claudia Müller-Birn, Netzprogrammierung 2011/12

27

Dynamic code loading
The Java VM interprets bytecode or compiles it on the fly and can load and run code
dynamically.

Bytecode loading is encapsulated in a ClassLoader
•  Developers can write custom ClassLoaders
•  Can load bytecode from anywhere
•  Specifically from the network

URLClassLoader (“out of the box”)
•  Loads from a Uniform Resource Locator (URL) (per file://, ftp://, http://)

Well-known example are Java Applets.

Volker Roth

<applet height=100 width=100 codebase="myclasses/" code="My.class">
<param name="ticker">
</applet>

28

What is the codebase
A codebase can be defined as a source, or a place, from which to load classes into a
Java virtual machine.

CLASSPATH is your "local codebase", because it is the list of places on disk from
which you load local classes. When loading classes from a local disk-based source,
your CLASSPATH variable is consulted.

So just as CLASSPATH is a kind of "local codebase", the codebase used by applets
and remote objects can be thought of as a "remote codebase". But other codebases
must be supported by a ClassLoader.

ClassLoaders form a hierarchy
•  Asks parent ClassLoader for class first, if not found then
•  Loads the class itself

Volker Roth

29

How codebase is used in applets
1.  Initialize ClassLoader for Applet
2.  ClassLoader first looks into CLASSPATH
3.  If class not found then load from URL
4.  Same for other classes the Applet needs

Volker Roth

30

Codebases for Java RMI

Volker Roth

31

RMI client making a remote method call

Volker Roth

33

Using codebase in RMI for more than just stub
downloading

The client may pass to the remote object:

1.  Primitive data types
2.  Types that are found in the remote CLASSPATH
3.  Types unknown to the remote object

-  Implementation of known interface
-  Subclass of known type

How can the latter case be handled?

Volker Roth

34

Using codebase in RMI for more than just stub
downloading (cont.)

Volker Roth

37

Java RMI case study
Distributed object component middleware I

Claudia Müller-Birn, Netzprogrammierung 2011/12

38

Case study: shared whiteboard

Claudia Müller-Birn, Netzprogrammierung 2011/12
http://www.flickr.com/photos/36567420@N06/

39

Steps to develop an RMI application

Design and implement the components of your distributed application

•  Define the remote interface(s)

•  Implement the remote object(s)

•  Implement the client(s)

Compile sources and generate stubs (and skeletons)

Make required classes network accessible

Run the application

Claudia Müller-Birn, Netzprogrammierung 2011/12

40

Java Remote interfaces Shape and ShapeList

import java.rmi.*;
import java.util.Vector;

public interface Shape extends Remote {

 int getVersion() throws RemoteException;
 GraphicalObject getAllState() throws RemoteException;

}

public interface ShapeList extends Remote {

 Shape newShape(GraphicalObject g) throws RemoteException;
 Vector allShapes() throws RemoteException;
 int getVersion() throws RemoteException;

}

43

Building a client and server programs
Java RMI

Claudia Müller-Birn, Netzprogrammierung 2011/12

44

Server program
The server is a whiteboard server which

•  represents each shape as a remote object instantiated by a servant that

implements the Shape interface
•  holds the state of a graphical object as well as its version number

•  represents its collection of shapes by using another servant that implements the
ShapeList interface

•  holds a collection of shapes in a Vector

Claudia Müller-Birn, Netzprogrammierung 2011/12

45

Java class ShapeListServer with main method

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

public class ShapeListServer{

 public static void main(String args[]){
 System.setSecurityManager(new RMISecurityManager());
 try{
 ShapeList aShapeList = new ShapeListServant();
 ShapeList stub =
 (ShapeList) UnicastRemoteObject.exportObject(aShapeList,0);
 Naming.rebind(”//bruno.ShapeList", stub);
 System.out.println("ShapeList server ready");

 }catch(Exception e) {
 System.out.println("ShapeList server main " + e.getMessage());}
 }

}

46

Java class ShapeListServant
implements interface ShapeList
import java.util.Vector;

public class ShapeListServant implements ShapeList {

 private Vector theList; // contains the list of Shapes
 private int version;

 public ShapeListServant() {...}
 public Shape newShape(GraphicalObject g) {
 version++;

 Shape s = new ShapeServant(g, version);
 theList.addElement(s);
 return s;

 }
 public Vector allShapes() {...}

 public int getVersion() { ... }
}

47

Java client of ShapeList
import java.rmi.*;
import java.rmi.server.*;
import java.util.Vector;

public class ShapeListClient{
 public static void main(String args[]){

 System.setSecurityManager(new RMISecurityManager());
 ShapeList aShapeList = null;
 try{
 aShapeList = (ShapeList) Naming.lookup("//bruno.ShapeList”);
 Vector sList = aShapeList.allShapes();
 } catch(RemoteException e) {System.out.println(e.getMessage());
 }catch(Exception e) {System.out.println("Client: " + e.getMessage());}

 }
}

48

Callbacks
Disadvantages of polling
1.  The performance of the server may be degraded by constant polling.
2.  Clients cannot notify users of updates in a timely manner.

Procedure callbacks
•  The clients creates a remote object that implements an interface that contains a

method for the server to call. We refer to this as a callback object.
•  The server provides an operation allowing interested clients to inform it of the

remote object references of their callback objects. It records these in a list.
•  Whenever an event of interest occurs, the server calls the interested clients.

Claudia Müller-Birn, Netzprogrammierung 2011/12

49

Summary
Remote method invocation

Claudia Müller-Birn, Netzprogrammierung 2011/12

50

We have we learned?
•  General components of an RMI infrastructure
•  Core concepts of the RMI infrastructure
•  The three RMI architecture layers
•  Proxy design pattern
•  Reflections
•  Process how a client finds a RMI remote service
•  Factory design pattern
•  Dynamic code loading in RMI

Claudia Müller-Birn, Netzprogrammierung 2011/12

51

Descriptive models for distributed system design

Architectural model

Our topics next week

Claudia Müller-Birn, Netzprogrammierung 2011/12

Physical
model

Architectural elements

Communicating
entities

Communication paradigm Roles and res-
ponsibilities

Placement

Inter-process communication

Remote
invocation

Indirect
communication

Processes

Objects

Components

Web Services

TCP
sockets

UDP
sockets

Multi-
cast

Architectural
styles

Client-server

Peer-to-peer

Multiple server

Proxy/Cache

Mobile code

Architectural patterns

Vertical distribution Horizontal distribution

Interaction
model

Multi-tier Thin/Fat Client

Interaction
model

Failure
model

Security
model

52

Indirect Communication
Next class

Claudia Müller-Birn, Netzprogrammierung 2011/12

53

References
Main resource for this lecture:
George Coulouris, Jean Dollimore, Tim Kindberg: Distributed Systems: Concepts and
Design. 5th edition, Addison Wesley, 2011

Oracle Remote Method Invocation (RMI):
http://java.sun.com/developer/onlineTraining/rmi/RMI.html#BooksAndArticles

Dynamic Code Loading:
http://download.oracle.com/javase/1.4.2/docs/guide/rmi/codebase.html

Security in Java RMI
http://www.eg.bucknell.edu/~cs379/DistributedSystems/rmi_tut.html#secure

Claudia Müller-Birn, Netzprogrammierung 2011/12

