
Prof. Dr. Claudia Müller-Birn
Institute for Computer Science, Networked Information Systems

Service oriented
Architecture and
Web Services
03-01-2012
Netzprogrammierung
(Algorithmen und Programmierung V)

2

What have we discussed so far?
Review

Claudia Müller-Birn, Netzprogrammierung 2011/12

3

Descriptive models for distributed system design

Architectural model

Addressed topics so far

Claudia Müller-Birn, Netzprogrammierung 2011/12

Physical
model

Architectural elements

Communicating
entities

Communication paradigm Roles and res-
ponsibilities

Placement

Inter-process communication

Remote
invocation

Indirect
communication

Processes

Objects

Components

Web Services

TCP
sockets

UDP
sockets

Multi-
cast

Architectural
styles

Client-server

Peer-to-peer

Multiple server

Proxy/Cache

Mobile code

Architectural patterns

Vertical distribution Horizontal distribution

Interaction
model

Multi-tier Thin/Fat Client

Interaction
model

Failure
model

Security
model

4

Our topics today
•  Web Services definition and motivating example

•  Web service infrastructure and components
•  Uniform Resource Identifier (URI)
•  The Hypertext Transfer Protocol (HTTP)

•  Realizing web services with SOAP
•  Web Service Description Language (WSDL)
•  Universal Description Discovery & Integration (UDDI)

•  RESTful Web services

Claudia Müller-Birn, Netzprogrammierung 2011/12

5

Web Services
Service oriented Architecture and Web Services

Claudia Müller-Birn, Netzprogrammierung 2011/12

6

Defining a web service
Generic definition
•  Any application accessible to other applications over the Web.

Definition of the UDDI consortium (http://www.uddi.org/pubs/UDDI_Executive_White_Paper.pdf)
•  Web services are self-contained, modular business applications that have open,

Internet-oriented, standards-based interfaces.

Definition of the W3C (http://www.w3.org/TR/ws-arch/)
•  A Web service is a software system designed to support interoperable machine-to-

machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the Web
service in a manner prescribed by its description using SOAP messages, typically
conveyed using HTTP with an XML serialization in conjunction with other Web-
related standards.

Claudia Müller-Birn, Netzprogrammierung 2011/12

7

Characteristics of a web service
A web service interface generally consists of a collection of operations that can be
used by a client over the Internet. The operations in a web service may be provided
by a variety of different resources, for example, programs, objects, or databases.

The key characteristic of most web services is that they can process XML-formatted
SOAP messages. An alternative is the REST approach.

Each web service uses its own service description to deal with the service-specific
characteristics of the messages it receives.

Commercial examples include Amazon, Yahoo, Google and eBay.

Claudia Müller-Birn, Netzprogrammierung 2011/12

8

The “travel agent service” example

Claudia Müller-Birn, Netzprogrammierung 2011/12

hire car booking
hotel bookinga

Travel Agent

flight bookinga

hire car bookinga
ServiceClient

flight bookingb

hotel bookingb
b

9

Motivating example

Claudia Müller-Birn, Netzprogrammierung 2011/12

web
server

internal
infrastructure

supplier customer

warehouse

web
server

internal
infrastructure

internal
infrastructure

internal procurement
requests

B2B interactions
occur by accessing
Web pages, filling
Web forms, or via
email.

Copyright Springer Verlag Berlin Heidelberg 2004

10

Web service infrastructure and components

Claudia Müller-Birn, Netzprogrammierung 2011/12

Security

Service descriptions (in WSDL)

Applications

Directory service

Web Services

XML

Choreography

SOAP

URIs (URLs or URNs) HTTP, SMTP or other transport

11

Uniform Resource Identifier (URI)
Web Services

Claudia Müller-Birn, Netzprogrammierung 2011/12

12

Resource identification
A Uniform Resource Identifier (URI) provides a simple and extensible means for
identifying a resource.

What is a resource?
•  The term "resource" is used in a general sense for whatever might be identified by

a URI
•  Familiar examples are websites, books, places, people, relations between these

resources but also abstract concepts, such as the operators and operands of a
mathematical equation

The concept of an URI is already established in various domains such as the Web
(URL), books (ISBN), digital object identifier (DOI).

Claudia Müller-Birn, Netzprogrammierung 2011/12

http://www.ietf.org/rfc/rfc3986.txt

13

URI, URL and URN
A URI can be further classified as a locator, a name, or both.

Uniform Resource Locator (URL, RFC1738)
•  Refers to the subset of URIs that, in addition to identifying a resource, provide a

means of locating the resource by describing its primary access mechanism (e.g.,
its network "location”)

•  Problem: can change over a lifetime of a web resource

Uniform Resource Name (URN, RFC2141)
•  Refers to URIs, which are required to remain globally unique and persistent even

when the resource ceases to exist or becomes unavailable, and to any other URI
with the properties of a name

Claudia Müller-Birn, Netzprogrammierung 2011/12

http://www.ietf.org/rfc/rfc3986.txt

14

Resources vs. representations
URIs identify resources
•  Abstractions which may not have physical representation
•  Requesting a URI yields a resource representation
•  Should be an appropriate and useful manifestation of the abstraction

Resources can have different representations
•  In a well-designed environment, you should get what works best for you
•  HTML for big screens vs. HTML for mobile devices
•  An event calendar based on my location and preferences

Claudia Müller-Birn, Netzprogrammierung 2011/12

(Wilde, 2008)

15

Web service infrastructure and components

Claudia Müller-Birn, Netzprogrammierung 2011/12

Security

Service descriptions (in WSDL)

Applications

Directory service

Web Services

XML

Choreography

SOAP

URIs (URLs or URNs) HTTP, SMTP or other transport

16

The Hypertext Transfer Protocol (HTTP)
Web Services

Claudia Müller-Birn, Netzprogrammierung 2011/12

17

DNS & HTTP
The two basic protocols which every Web browser must implement are DNS access
and HTTP. However, most operating systems provide an API for DNS access, so the
browser can use this service locally and only has to implement HTTP. TCP (which is
required as the foundation for HTTP) is usually provided by the operating system.

Claudia Müller-Birn, Netzprogrammierung 2011/12

(Wilde, 2008)

18

HTTP messages
HTTP needs a reliable connection
•  The foundation for HTTP is the Transmission Control Protocol (TCP)
•  DNS resolution yields an IP address
•  Open TCP connection to port 80 or port specified in URI (http://

rosetta.sims.berkeley.edu:8085/)

HTTP is a text-based protocol
•  The connection is used to transmit text messages
•  All HTTP messages are human-readable (not all entities, though)
•  Basic HTTP operations can be carried out by hand

Claudia Müller-Birn, Netzprogrammierung 2011/12

(Wilde, 2008)

19

HTTP header fields
Header fields contain information about the message
•  General header: Date as the message origination date
•  Request header: Accept-Language indicated language preferences
•  Response header: Server contains system information
•  Entity header: Content-Type specifies the media type of the entity

HTTP defines a number of header fields
•  Unknown fields must be ignored (extensibility)
•  Unstandardized fields should use a “X-” prefix

HTTP is about acting on these fields
•  HTTP defines what HTTP implementations must or should do

Claudia Müller-Birn, Netzprogrammierung 2011/12

(Wilde, 2008)

20

HTTP Requests
After opening a connection, the client sends a request
•  The method indicates the action to be performed on the resource
•  HTTP's most interesting methods are: GET, HEAD, POST
•  Other interesting methods are: PUT, DELETE

The URI identifies the resource to which the request should be applied
•  Absolute URIs are required when contacting Proxies
•  Absolute paths are required when contacting a server directly
•  The URI may contain query information
•  Fragment identifiers are not sent (they are interpreted on the client side)

The host header field must be included in every request.

Claudia Müller-Birn, Netzprogrammierung 2011/12

(Wilde, 2008)

21

HTTP GET
Retrieval action based on the URI
•  Maybe implemented by reading a file
•  Maybe implemented by processing a file (PHP)
•  Maybe implemented by invoking a process

Semantics may change based on header fields
•  If-*: only reply with the entity if necessary
•  Range: only reply with the requested part of the entity

Cacheability depends on header fields of the response

Claudia Müller-Birn, Netzprogrammierung 2011/12

(Wilde, 2008)

22

HTTP Responses
The status code is given numerically and as text
•  1xx: Informational - Request received, continuing process
•  2xx: Success - The action was successfully received, understood, and accepted
•  3xx: Redirection - Further action must be taken in order to complete the request
•  4xx: Client Error - The request contains bad syntax or cannot be fulfilled
•  5xx: Server Error - The server failed to fulfill an apparently valid request

Header fields specify additional information
•  Information about the server
•  Information about the entity (media type, encoding, language)

Claudia Müller-Birn, Netzprogrammierung 2011/12

(Wilde, 2008)

23

Client Error 4xx
This class of HTTP status message indicates there is a problem or error at the client
or user agent end.

Examples
•  400 Bad Request: The request could not be understood by the server due to

malformed syntax.
•  401 Unauthorized: The request requires user authorization but the authorization

codes sent were invalid or the user was not recognized in the system.
•  403 Forbidden: The server understood the request, but refuses to fulfill it.

Authorization, in this case, doesn't matter.
•  404 Not Found: This is the most easily recognized error message. It states that

the URI requested does not exist on the server.

Complete list: http://www.ietf.org/rfc/rfc2616.txt

Claudia Müller-Birn, Netzprogrammierung 2011/12

24

Server Error 5xx
These error messages are sent when the server is aware that it has had a problem or
error.

Examples
•  500 Internal Server Error: The server encountered something unexpected that

didn't allow it to complete the request. This is often seen with CGI scripts that have
problems.

•  503 Service Unavailable: The server is unable to handle the request due to
maintenance or a temporary overload of the server.

•  505 HTTP Version Not Supported: The server does not support the HTTP
version that was used to make the request.

Complete list: http://www.ietf.org/rfc/rfc2616.txt

Claudia Müller-Birn, Netzprogrammierung 2011/12

25

HTTP performance
HTTP/1.0 (RFC1945) allowed one transaction per connection
•  TCP connection setup and teardown are expensive
•  TCP's slow start slows down the initial phase of data transfer
•  Typical Web pages use between 10-20 resources (HTML + images)
•  Typically, these resources are stored on the same server

HTTP/1.1 (RFC2613) introduces persistent connections
•  The TCP connection stays open for some time (10 sec is a popular choice)
•  Additional requests to the same server use the same TCP connection

HTTP/1.1 (RFC2613) introduces pipelined connections
•  Instead of waiting for a response, requests can be queued
•  The server responds as fast as possible
•  The order may not be changed (there is no sequence number)

Claudia Müller-Birn, Netzprogrammierung 2011/12

(Wilde, 2008)

26

HTTP connection handling

Claudia Müller-Birn, Netzprogrammierung 2011/12

(Wilde, 2008)

27

What is content negotiation
Negotiation between two HTTP peers
•  Resources may be available in different representations
•  Possible dimensions are language, graphics format, character encoding, …
•  By using one URI, it should be possible to get the “best” resource

Negotiation requires knowledge about the resource user
•  Languages depend on humans reading pages
•  Graphics formats depend on the browser's functionality

Content negotiation is a form of a Web-based service
•  Client request a URI and have some constraints
•  Using these constraints, the best representation should be served
•  Ideally, content negotiation should not be too expensive

Claudia Müller-Birn, Netzprogrammierung 2011/12

(Wilde, 2008)

28

Three different variants
Server Side Content Negotiation
•  The server has a set of representations and information from the request
•  The server returns the “best” representation based on the request

Client Side Content Negotiation
•  The server responds with a list of different representations
•  The client (browser or user) makes a choice and sends a second request

Transparent Content Negotiation
•  Caches act as in client side negotiation and thus know the available

representations
•  Clients contacting the cache can be served by the cache as in server side

negotiation

Claudia Müller-Birn, Netzprogrammierung 2011/12

(Wilde, 2008)

29

Web server session management
Session management is used to make the stateless HTTP protocol support session
state.

For example, once a user has authenticated oneself to the web server, her next
HTTP request (GET or POST) should not cause the web server to ask her for her
account and password again.

For this, cookies (RFC 6265) are frequently used. Typically the web server will first
send a cookie containing a unique session identifier. Users then submit their
credentials and the web application authenticates the session and allows the user
access to services.

The session information is stored on the web server using the session identifier
(session ID) generated as a result of the first (sometimes the first authenticated)
request from the end user running a web browser.

Claudia Müller-Birn, Netzprogrammierung 2011/12

HTTP State Management Mechanism http://tools.ietf.org/html/rfc6265
http://en.wikipedia.org/wiki/Session_management

30

Web service infrastructure and components

Claudia Müller-Birn, Netzprogrammierung 2011/12

Security

Service descriptions (in WSDL)

Applications

Directory service

Web Services

XML

Choreography

SOAP

URIs (URLs or URNs) HTTP, SMTP or other transport

31

Realizing web services with SOAP
Web Services

Claudia Müller-Birn, Netzprogrammierung 2011/12

32

Simple Object Access Protocol (SOAP)
SOAP is designed to enable both client-server and asynchronous interaction over the
Internet. It defines a scheme for using XML to represent the contents of request and
reply messages as well as a scheme for the communication of documents.

It is used for information exchange and RPC, usually (but not necessarily) over
HTTP.

(Very) basic SOAP architecture:

Claudia Müller-Birn, Netzprogrammierung 2011/12

33

SOAP message in an envelope

Claudia Müller-Birn, Netzprogrammierung 2011/12

envelope

header

body

header element

body element

header element

body element

•  Context of the message
•  Transaction instructions,

identification information, etc.

•  Core contents of the procedure
call, including method name,
parameters, types, etc.

•  May be document-style or RPC-
style content

34

Describing a SOAP service
The Web Service Description Language (WSDL) provides a formal description of a
web service, much like CORBA's IDL. The WSDL file is all you need to know how to
call the web service; toolkits can generate proxy code from a WSDL file directly.

Essentially, a WSDL document describes three properties of a Web Service:
•  What a service does - the functions which the service can provide, and the

arguments needed to invoke them.
•  How a service is accessed - details of data formats and protocols required.
•  Where a service is located - details of a protocol-specific network address, such as

a URL.

The official WSDL definition is at http://www.w3.org/TR/wsdl.

Claudia Müller-Birn, Netzprogrammierung 2011/12

35

WSDL general structure
<definitions> Defines the namespaces used by the WSDL document to describe

services.
<types>

Container for datatype definitions.
XSD Schema is used for describing types.

<message>

Defines the data being exchanged. Lists data input and output

<portType>

Describes the set of operations that each port provides

<binding>

Describes the transport protocol and data format details for a each
port.

<port> A single end point defined by a binding and gives the Internet
address of the service

<service> A collection of related services.
<documentation>

Human readable documentation. Provides comments anywhere
inside the WSDL document and may be used to generate
application specific documentation.

Claudia Müller-Birn, Netzprogrammierung 2011/12

36

A directory service for use with web services
The focus of Universal Description Discovery & Integration (UDDI) is the definition of
a set of services supporting the description and discovery of

(1) businesses, organizations, and other Web services providers,
(2)  the Web services they make available, and
(3)  the technical interfaces which may be used to access those services.

It provides a name service and a directory service. That is, WSDL service
descriptions may be looked up by name (a white page service) or by attribute (a
yellow page service). They may also be accessed directly via their URLs.

Claudia Müller-Birn, Netzprogrammierung 2011/12

More information at:
http://www.oasis-open.org/committees/uddi-spec

37

Web service architecture

Claudia Müller-Birn, Netzprogrammierung 2011/12

Service
Requestor

Find Publish

Bind

Discovery
service

Service
Provider

(SOAP)

(SOAP)

(WSDL)

(UDDI)

http://www.w3.org/TR/ws-arch/

38 Claudia Müller-Birn, Netzprogrammierung 2011/12

Did we talked about
everything?

39 Claudia Müller-Birn, Netzprogrammierung 2011/12

40

Representational State Transfer (REST)
Service oriented Architecture and Web Services

Claudia Müller-Birn, Netzprogrammierung 2011/12

41

What is REST?
REST stands for Representational State Transfer and it was invented by Roy Fielding
in 2000.

"Representational State Transfer is intended to evoke an image of how a well-
designed Web application behaves: a network of web pages (a virtual state-
machine), where the user progresses through an application by selecting links (state
transitions), resulting in the next page (representing the next state of the application)
being transferred to the user and rendered for their use."

REST is an architecture style for designing networked applications. The idea is that,
rather than using complex mechanisms such as CORBA, RPC or SOAP to connect
between machines, simple HTTP is used to make calls between machines.

The World Wide Web itself, based on HTTP, can be viewed as a REST-based
architecture.

Claudia Müller-Birn, Netzprogrammierung 2011/12

(Elkstein, 2008)

42

REST design principles
Stateless Client/Server Protocol: Each message contains all the information needed
by a receiver to understand and/or process it. This constraint attempts to “keep things
simple” and avoid needless complexity.

A set of uniquely addressable resources enabled by a universal syntax for resource
identification; “Everything is a Resource” in a RESTful system.

A set of well-defined operations that can be applied to all resources; In the context of
HTTP, the primary methods are POST, GET, PUT, and DELETE, similar (but not
exactly) to the database world's notion of CRUD (Create, Read, Update, Delete).

Resources are typically stored in a structured data format that supports hypermedia
links, such as HTML or XML.

Claudia Müller-Birn, Netzprogrammierung 2011/12

43

REST operations
If we assume the standard four operations from HTTP/1.1 then the “meanings” of
these operations would be something like:

Claudia Müller-Birn, Netzprogrammierung 2011/12

44

Stateless Interactions
For many RESTful applications, state is an essential part but the idea of REST is to
avoid long-lasting transactions in applications.

Statelessness in this context means to move state to clients or resources and the
most important consequence is to avoid state in server-side applications.

Resource state is managed on the server. It is the same for every client working with
the service and when a client changes resource state other clients see this change
as well.

Client state is managed on the client and it is specific for a client and thus has to be
maintained by each client. It may affect access to server resources, but not the
resources themselves.

Claudia Müller-Birn, Netzprogrammierung 2011/12

45

Principles of REST Web Service Design
1.  Identify all of the conceptual entities you want to expose as services.

2.  Create a URL to each resource.

3.  Categorize your resources according to whether clients can just receive a
representation of the resource, or whether clients can modify (add to) the
resource. For the former, make those resources accessible using an HTTP GET.
For the later, make those resources accessible using HTTP POST, PUT, and/or
DELETE.

4.  Design to reveal data gradually. Don't reveal everything in a single response
document. Provide hyperlinks to obtain more details.

5.  Describe how your services are to be invoked using either a WSDL document, or
simply an HTML document.

Claudia Müller-Birn, Netzprogrammierung 2011/12

http://www.xfront.com/REST-Web-Services.html

46

A RESTful Web service, an example
Representational State Transfer (REST)

Claudia Müller-Birn, Netzprogrammierung 2011/12

Please read the complete example on
http://www.peej.co.uk/articles/restfully-delicious.html

47 Claudia Müller-Birn, Netzprogrammierung 2011/12

Delicious is a social bookmarking web service for
storing, sharing, and discovering web bookmarks.

Delicious has “a simple REST API”, that means a simple POX over HTTP API or
REST-RPC hybrid service

Delicious’s API isn't very RESTful. Why not?
•  First class objects aren't exposed as resources, so bookmarks or tags can not be

accessed directly.
•  HTTP methods not used correctly, everything is done via GET even operations

that change things.
•  Resource representations not interconnected, you can't traverse from a list of

bookmarks to a single bookmark.

48

What do we want to do with such a web
service?

•  Get a list of all our bookmarks and to filter that list by tag or date or limit by number
•  Get the number of bookmarks created on different dates
•  Get the last time we updated our bookmarks
•  Get a list of all our tags
•  Add a bookmark
•  Edit a bookmark
•  Delete a bookmark
•  Rename a tag

Claudia Müller-Birn, Netzprogrammierung 2011/12

Our two resources are bookmarks and tags:
•  http://del.icio.us/api/[username]/bookmarks
•  http://del.icio.us/api/[username]/tags

49

Getting Bookmarks
In the POX Delicious API bookmarks are accessed by a RPC style request to

http://del.icio.us/api/posts/get
with a number of optional query string parameters that influence the returned results.

To do a similar thing RESTfully, we'll define a similar resource at

http://del.icio.us/api/[username]/bookmarks/
that returns a list of bookmarks.

We'll also define an infinite number of resources at

http://del.icio.us/api/[username]/bookmarks/[hash]
that represent our individual bookmarks where [hash] is the Delicious hash used to
identify a bookmark.

Claudia Müller-Birn, Netzprogrammierung 2011/12

50

Get all bookmarks

Claudia Müller-Birn, Netzprogrammierung 2011/12

51

An example delicious/bookmarks+xml
document

Claudia Müller-Birn, Netzprogrammierung 2011/12

GET http://del.icio.us/api/peej/bookmarks/?start=1&end=2

<?xml version="1.0"?>
<bookmarks start="1" end="2"
 next="http://del.icio.us/api/peej/bookmarks?start=3&end=4">
 <bookmark url="http://www.example.org/one" tags="example,test"
 href="http://del.icio.us/api/peej/bookmarks/a211528fb5108cddaa4b0d3aeccdbdcf"
 time="2005-10-21T19:07:30Z">
 Example of a Delicious bookmark
 </bookmark>
 <bookmark url="http://www.example.org/two" tags="example,test"
 href="http://del.icio.us/api/peej/bookmarks/e47d06a59309774edab56813438bd3ce"
 time="2005-10-21T19:34:16Z">
 Another example of a Delicious bookmark
 </bookmark>
</bookmarks>

52

HTTP & Java
You want to compose a HTTP request message in Java and then send it to a HTTP
Web server?

•  Java standard library

http://docs.oracle.com/javase/7/docs/api/java/net/HttpURLConnection.html

•  Apache HttpComponents

http://hc.apache.org/

•  RESTful web framework for Java

http://www.restlet.org/

•  JAX-RS: Java API for RESTful Web services
http://www.jcp.org/en/jsr/detail?id=311

Claudia Müller-Birn, Netzprogrammierung 2011/12

53

Summary
Distributed objects and components

Claudia Müller-Birn, Netzprogrammierung 2011/12

54

So, what have we learned today?
•  We know now the difference between URIs, URLs and URNs.

•  By providing a resource, we should always keep in mind that different
representations of resources might be useful.

•  You know about the possible HTTP responses.

•  There are different approaches to realize web services. Even though, people talk
about SOAP, REST is much more applied in practice.

•  Difference between SOAP- and REST-based web services.

Claudia Müller-Birn, Netzprogrammierung 2011/12

55

References
George Coulouris, Jean Dollimore, Tim Kindberg: Distributed Systems: Concepts and Design. 5th
edition, Addison Wesley, 2011.

American National Standards Institute, "Coded Character Set -- 7-bit American Standard Code for
Information Interchange", ANSI X3.4, 1986.

Elkstein, M.: Learn REST: A Tutorial. Blog. URL: http://rest.elkstein.org/

Wilde, Erik: Web Architecture. Lecture INFO 290-03 (CCN 42584). UC Berkeley. 2008. URL:
http://dret.net/lectures/web-fall08/

Roy Thomas Fielding: Architectural Styles and the Design of Network-based Software
Architectures. Dissertation. University of California Irvine. 2000.
URL: http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Further reading:
“How I Explained REST to My Wife” http://www.eioba.com/a/1htn/how-i-explained-rest-to-my-wife
W3C (1998): Cool URIs don't change. http://www.w3.org/Provider/Style/URI

Claudia Müller-Birn, Netzprogrammierung 2011/12

